

Epigenetics

In the 1940's (Waddington et al.) • The sum of the genes and their products and how they define a phenotype (dividing kidney and skin cells are identical in their DNA but give rise to cells of different phenotype). Today

• Changes in gene function that are mitotically and/or meiotically heritable and that do not entail a change in DNA sequence.

What does this mean?

DNA Methylation mmals, ~1% of DNA bases methylated on -5 of cytosine pyrimidine ring (5-cytosine). Most frequent at 5'-CpG-3' dinucleotides (~70% of all CpGs). - In general, CpGs are under-represented (suppressed) CpG islands - Regions (500-1 kb) of higher G+C than genome average.

vely devoid of methylation. 6 mammalian RNA Pol II promoters found in 1ands.

DNA Methylation and Gene Expression

 Cytosine residues in 5'CpG are often postsynthetically methylated
 CpG methylation is involved in longterm silencing of certain gene during development

•• The methyl-CpG-binding proteins MeCP1 and MeCP2 interact specifically with methylated DNA and mediate transcriptional repression.

© O Doug

HDAC group	Yeast HDAC*	Inhibitor sensitivity [‡]	Human HDAC	Inhibitor sensitivity
Class I	Rpd3	S	HDAC1 HDAC2 HDAC3 HDAC8	S S S
Class II ^s	Hda1	S	HDAC4 HDAC5 HDAC6 HDAC7 HDAC9	5 5 5 5 5 5 5 5
Class III	Sir2 Hst1 Hst2 Hst3 Hst4	NS ND ND ND ND	SIRT1 SIRT2 SIRT3 SIRT4 SIRT5 SIRT5	ND ND ND ND ND

MicroBINAL After the transcription of a miRNA gene follows the nuclear cleavage of the pri-miRNA performed by the Drosha RNase III endonuclease. This enzyme cuts both strands of the pri-miRNA near the stem loop and generates ~60–70 nt stem loop miRNA precursor (pre-miRNA). This pre-miRNA is transported to the cytoplasm by the export receptor Exportin-5. The nuclear cut by Drosha defines one end of the mature miRNA and cytoplasmic cut by Dicer, also RNase III endonuclease, defines the opposite one. Dicer recognizes the pre-miRNA and cuts both of its strands at about two helical turns away from the base of the stem miRNA duplex arms is chosen and mature miRNA duplex arms is chosen and mature miRNA is associated with RNA-induced silencing complex RISC. RISC acts to repress the translational repression or mRNA cleavage.

ROLE IN CANCER

- Recent studies show that some microRNAs regulate cell proliferation and apoptosis, processes that are important in cancer formation.

- In addition, some miRNAs may function as oncogenes or tumor suppressors.

-More than 50% of miRNA genes are located in cancer associated genomic regions or in fragile sites.

ROLE OF miRNA in cell growth and cell death

miRNA and CANCER: what is the link ?

- Global KD of miRNAs (obtained through RNA-interference silencing of the miRNA processing enzymes Drosha, DGCR8 and Dicer) enhances tumorigenicity and malignant behaviour (MTX, growth) of cancer cells (Kumar et al. 2007). BUT, miRNAs deletion is NOT sufficient to promote cancerogenesis !
- Hemizigous deletion of Dicer is found in 27% of cancers (haploinsufficient oncosuppressor)

CANCER miRNOMA

- A large microarray analysis (363 solid tumours and 177 normal tissues) identified 36 miRNA over-expressed and 21 down-regulated miRNAs, suggesting both oncosuppressive and oncogenic functions of miRNAs. target
- ONCOMIRNAs: target and down-regulate oncosuppressors
- TUMOR SUPPRESSIVE MIRNAs: target and down-regulate oncogenes

miRNA double-face

- EXAMPLE:
- high expression of the cluster miR-17-92 only induces lympho-proliferative disorders, but in a MYC-driven B-cell lymphoma it accelerates in vivo tumorigenicity,
- whereas homozygous deletion of the miR-17-92 locus causes pre-B cell death and lymphopenia.

MPORTANCE OF THE CELLULAR CONTEXT

MiR-221 and MiR-222 inhibit erithropoiesis by inhibiting the expression of the oncogene c-Kit

However, in liver, these miRNAs stimulate the growth of transplanted cancer cells: in this case, miRNA-221 and 222 down-regulate PTEN and activate the Akt-mTOR pathway !

Oncogenic activity of miR-17-92

- Cluster arising from a polycistronic RNA that gives rise to 7 miRNAs: miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, mi-R-19b, miR-92-1.
- miR-19a and miR-19b target PTEN mRNA and activate the Akt-mTOR pathway.
- Other targets: pro-apoptotic Bim (in B-CLL)

Roles of small RNAs in tumor formation Gianpiero Di Leva and Carlo M. Croce

Tumer	Results	References
Chronic lymphocytic	CLL cells show a unique signature that associates with the presence or absence of	[18,53,92]
leukemia (CLL)	disease progression and cytogenetic abnormalities.	
Acute myeloid leukemia	CD34(+) cells and AML cases differentially express miRNAs that associate with	[19]
(AML)	several cytogenetic groups (11q23 translocations and isolated trisomy 8).	14001
Acute promyelocytic	Identified 12 miRNAs in APL blasts compared with normal promyelocytes;	[100]
seukemia (APL)	min-342 and let-/c are modulated by retinoic acid.	(00)
wordpie myeloma (wiwi)	First identification of mininka signature in myeloma cell lines and patients.	(20)
leukemia (ALL)	identification of mining eignature in ALL patients.	TION
B-cell lymphomas (DLBCL) and	DLBCL- and FL-specific miRNA signatures. A total of 98% of all 111 cases were	[103]
follicular lymphomas (FL)	correctly identified based on the expression of four miRNAs (miR-210/106a/17-5p/330).	
Barrett's esophagus and	Identification of several miRNAs differentially expressed in the progression from	[105]
esophageal	low grade-dysplasia Barrett's esophagus to adenocarcinoma.	
adenocarcinoma		
Breast cancer	Reported miRNomes of normal and breast cancer samples. Dysregulated miRNAs	[22]
Gliphlastoma	Benorted miBNA profiles from case-matching pairs of tymor and control samples	[21]
	Nine mIRNAs are overexpressed and four are underexpressed in tumors	
1200 000 0000	compared with normal.	100000
Hepatocellular carcinoma (HCC)	Reported miRNA profiles in HCCs compared with adjacent normal tissue and additional chronic hepatitis specimens. Identified a new diagnostic tool for HCCs.	[17]
Ovarian cancer	Identification of miRNAs whose expression correlates with specific ovarian cancer	[93]
	pathologies, such as histotype, lymphovascular and organ invasion and involvement of ovarian surface.	
Lung adenocarcinoma	Reported molecular signatures that differ across tumor histology; miR-155 and	[94]
	let-7 correlate with survival.	
Papillary thyroid carcinoma	Reported upregulation of miRNA-221/222 in tumor cells and adjacent normal	[95]
	cells compared with normal thyroid.	
Endocrine pancreatic cancer	Reported mIRNA signatures from endocrine and acinar tumors; mIR-21 associates with proliferation index and liver metastasis.	[96]
Colon cancer	Reported differential expression levels for 39 mIRNAs between colon tumors and	[20]
	normal tissue. Colon tumors differentially express miRNAs according to their	
	mismatch repair status.	
Gastric cancer	Identified 22 miRNAs upregulated and 13 downregulated in gastric cancer by comparing non-tumor mucosa to cancerous tissue.	[97]
Cervical cancer	Identification of miRNA signature in 102 cervical cancers by PCR-based miRNA	[98]
Clear call hidney canoor (coRCC)	Identified 26 miRMA downshipted and 9 uprecisited in 29 mRCC entirest matched	1991
clear control (conce)	specimens. Downregulated microRNAs are correlated with common chromosome	(00)
Careage a	Missiphi and a second a shear a shear a startify different histological types of earsema	11021
Seconie	reflection differentiation status and annarent lineage of the tumors	11041
Bledder cancer	Identification of miRNA differentially expressed between normal urothelium/cancer	[104]