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Simple Summary

Between 2021 and 2024, large segments of the population—including cancer patients—
experienced multiple COVID-19 infections and received repeated doses of mRNA vaccines.
The concomitant increase in newly diagnosed cancers or fast progression of cancers under
treatment raised concerns about whether SARS-CoV-2 or the vaccines might play a role in
these outcomes. While it appears extremely unlikely that SARS-CoV-2 and anti-COVID-19
mRNA vaccines can elicit genotoxic events causing neo-cancerogenesis in a short time,
they could still cause non-genotoxic pro-carcinogenic effects. Indeed, multiple molecular,
cellular, and systemic mechanisms, including disruption of the immunosurveillance and
induction of inflammation in the tumor microenvironment, disruption of autophagy and
of tumor suppressor pathways, and activation of signaling involved in cell proliferation
and cell migration, could synergistically lead to the awakening and fast growth of dormant
microtumors, particularly in vulnerable individuals exposed to both repeated infections
and vaccinations over a short time frame.

Abstract

To contrast the COVID-19 pandemic brought by the corona virus SARS-CoV-2, two mRNA-
based anti-COVID-19 vaccines (by Pfizer-BioNTech and Moderna) were made available
relatively quickly and deployed worldwide based on an emergency approval. Being consid-
ered vulnerable and at risk of infection, cancer patients have been prioritized for COVID-19
vaccination and vaccinated repeatedly because of the short time protection provided by
these vaccines. Recently, a surge in the incidence and rapid progression of cancers has been
observed in many countries, which could (at least partially) represent cancers undiagnosed
or untreated during the pandemic. It has also been suggested that the SARS-CoV-2 itself
or even the anti-COVID-19 mRNA vaccines could have contributed to the recurrence and
worse clinical outcome in cancer patients, given the high incidence of COVID-19 in hospital-
ized patients and that these patients have been vaccinated with priority several times and in
a short period. Although it appears extremely unlikely that SARS-CoV-2 and anti-COVID-
19 mRNA vaccines elicit genotoxic events and cause neo-cancerogenesis in a short time,
they could still cause non-genotoxic pro-carcinogenic effects by triggering an exaggerated
inflammatory reaction, compromising immune homeostasis, stimulating cell proliferation,
and negatively affecting cellular stress response and damage repair machinery. This could
result in the promotion of regrowth of dormant micrometastases or relapses of stable mini-
mal residual disease. Such a harmful outcome may likely result from a synergy between the
virus and the vaccine, especially in multi-vaccinated and multi-infected individuals. Here,
I bring the cell pathologist’s point of view and discuss the multiple possible mechanisms by
which the virus and the anti-COVID-19 mRNA vaccine might favor tumorigenesis. While a
causal link cannot be established at this stage, knowledge of potential carcinogenic risks
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could help doctors and health policymakers take the best actions to protect vulnerable
patients and convince the vaccine developer to design a vaccine free from such harm.

Keywords: COVID-19; mRNA vaccine; lipid nanoparticle; autophagy; tumor dormancy;
epigenetics; tumor microenvironment; cytokines; tumor suppressors

1. Introduction
In March 2020, the WHO officially declared COVID-19, the infection brought by

the coronavirus SARS-CoV2, as a global pandemic. At that time, because of the large
number of infected patients requiring assistance, many hospitals opted to give priority
to these patients, converting specialist wards into COVID-dedicated wards, and this has
inevitably postponed specialist treatment for other pathologies, including cancer [1,2]. As
a result, diagnosis and medical care at earlier stages of disease were negated to a large
population [3].

A few months later (i.e., December 2020 and January 2021), the administration of
mRNA-based anti-COVID-19 vaccines (BNT162b2/Comirnaty from Pfizer-BioNTech and
mRNA-1273/Spikevax from Moderna), manufactured with a novel technology and ap-
proved for emergency use, was prioritized for elders (over 60 s) and “vulnerable” (so-
called “frail”) patients with chronic diseases such as neuro-degenerative disorders, au-
toimmune diseases, and cancer particularly among others [4,5]. Soon after, vaccina-
tion was made mandatory for health care workers and thereafter for the general pop-
ulation to be able to work in public settings. As of August 2023, a total of 84.8% of
the European Union adult population had been vaccinated at least once against the
virus (https://commission.europa.eu/strategy-and-policy/coronavirus-response/safe-
covid-19-vaccines-europeans_en; accessed on 31 August 2025). As of April 2023, almost
400 million doses of Pfizer-BioNTech and 250 million doses of Moderna vaccines have been
administered in the United States (https://www.statista.com/statistics/1198516/covid-19
-vaccinations-administered-us-by-company/; accessed on 31 August 2025). Since then, the
rate of vaccination has steadily declined in all Western countries.

During the pandemic, almost 775,615,736 confirmed cases and over 7,051,323 deaths
have been attributed to COVID-19 by the World Health Organization (WHO) (https://
covid19.who.int/; accessed on 28 June 2024). According to a recent study, during the period
of December 2020 through March 2023, the anti-COVID-19 vaccines would have saved up
to 1.6 million of lives among people aged >25 years old in European countries [6].

The COVID-19 pandemic was officially declared terminated on 5 May 2023 [7], yet
WHO warns the governments on the need to continue the anti-COVID-19 vaccination
campaign as a preventive measure to reduce the hospitalization burden. Again, cancer pa-
tients are forced to vaccinate against COVID-19 as per the recommendation of the scientific
societies of oncologists (ASCO, American Society of Clinical Oncology in US, and ESMO,
European Society of Medical Oncology in Europe, and others similar). Comirnaty (Pfizer-
BioNTech) and Spikevax (Moderna) remain the most widely used anti-COVID-19 vaccines.

Presently, the worst of the virus seems to be over. On the opposite, cancer is on
the rise worldwide [8], with almost 20 million new cases and 9.7 million cancer-related
deaths in 2022, and it is predicted to further increase to up to 35 million new cases in
2050 (https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising-
incidence-and-stark-inequities; accessed on 30 December 2024). In the United States, the
cancer mortality rate decreased by 33% from 1991 through 2021 [9]. In 2025, it is estimated
that two million new cases of cancer will be diagnosed and about 618,000 people will die
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from cancer in the United States (https://www.cancer.gov/about-cancer/understanding/
statistics; accessed on 31 August 2025). A recent study based on a mathematical model
predicting cancer incidence and mortality rates in Australia indicates that the number of
new diagnoses will increase by 51% and mortality will increase by 36% between 2020 and
2044 [10].

More worrisome is the recent projection showing an increased incidence of cancer at a
younger age (<50) for the generation born in 1965–1980 compared to the generation born
before 1964 [11]. The style of life is blamed as the main culprit for such trend, though other
factors, including infections and medications that negatively impact on the immune system
and metabolic homeostasis, should not be neglected.

The case reports describing the sudden occurrence of rapidly progressing cancers diag-
nosed at an advanced stage in otherwise healthy patients or the relapse and fast progression
of cancers in cancer-bearing patients after anti-COVID-19 vaccination are increasing in
the peer-reviewed literature, not considering the retracted one (see Tables 1 and 2). Con-
sequential and time correlations, which do not imply a causal correlation per se between
the vaccination campaign and such increased incidence of cancer, have raised concerns
about the possible causal link. However, establishing a causal link is challenging because
the national cancer registries do not consider the newly diagnosed or the recurrent cancers
as possibly linked to the vaccination status. On the other hand, prospective active phar-
macovigilance that matches vaccinated and unvaccinated individuals, healthy or cancer
carriers, has not been pursued in the last three years, and would in any case be impractica-
ble because both populations of healthy individuals aged >60 years (those more susceptible
to developing cancer) and cancer patients have largely been vaccinated. Adding to the
complexity, these patients likely have also been infected with SARS-CoV2 before and/or
after vaccination. Now that five years have passed since the spread of the virus throughout
the world and that the vaccine has been administered to a large population for three years,
we can take stock and try to answer the fundamental questions: (i) Is it plausible that the
COVID-19 virus and the anti-COVID-19 mRNA vaccines may cause cancer? And, if yes,
(ii) how much have they contributed and how much will they contribute in the future to
the increase in cancer? When addressing these questions, we must consider that cancer
intrinsically tends to worsen (despite the treatment), and that these patients have been
vaccinated three or more times and, most likely, have also contracted COVID-19 [12–14].
Thus, it is objectively difficult to determine and weigh the factor(s) causing clinical wors-
ening in cancer patients. Similarly, in the case of (apparently) healthy individuals who
experience the sudden onset of cancer after vaccination, we must consider possible previous
SARS-CoV2 infections or other predisposing factors that could have favored carcinogenesis.
In the latter case, the virus and the vaccine could still have had an add-on triggering role.
But one thing must be clarified immediately: the concept of “turbocancer” developing in
little more than two years has no scientific basis, even in the case of injecting carcinogenic
chemicals into the bloodstream.

Here, I will not delve into the causality assessment, which would be intricate and
challenging [15], and instead will present and discuss the potential mechanisms and
pathways through which the SARS-CoV2 virus and the anti-COVID-19 genetic vaccines
could contribute to carcinogenesis or worsening of pre-existing tumors. This knowledge
is useful for informing policymakers and clinicians in choosing the best public health
intervention to protect citizens and patients facing similar viral pandemics in the future.
The objective is not to blame cancer on the virus or anti-COVID-19 vaccines but rather
to instill doubts and stimulate reflection free from any prejudice, dogmas, and conflict of
interest on the safety of these mRNA vaccines and on the best precautions to implement to
protect patients at risk of viral infections.

https://www.cancer.gov/about-cancer/understanding/statistics
https://www.cancer.gov/about-cancer/understanding/statistics
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2. The Virus, the Cancer, and the mRNA Vaccine: The Ugly, the Bad, and
the Good?

Parodying the cult film “The Good, the Bad, and the Ugly”, we can say for sure that
the “Ugly” is the virus and the “Bad” is the cancer, but are we sure that the vaccine is
the “Good”?

2.1. The Cancer

Let us start with the “Bad” guy. Cancer is not a single well-defined disease, rather
it is a complex multifaceted disease that evolves continuously and dynamically changes
its features in response to local and systemic environmental signals [16,17]. At the time of
cancer diagnosis, we face a mass that is constituted by many different malignant clones
of cells that behave differently (in terms of proliferation, metabolism, survival, migration,
and other characteristics) and that very likely have already spread in other body districts
to form metastases, some of which may not be detectable by diagnostic imaging [18].
During this process, other cells in the same tissue may undergo transformation into cancer
cells and start that very same process of clonal evolution and spreading. Thus, when
the patient eventually calls upon a doctor because of the symptoms, the body is likely to
have many different cancers at various degrees of progression in one or more organ(s).
According to the “somatic mutation theory”, transformation into a cancer cell results
from the accumulation of mutations in the functioning of several genes (belonging to the
families of oncogenes, tumor suppressor genes, and DNA repair genes) that control cell
proliferation, cell differentiation, cell death, cell migration, cell metabolism, and systems
for repairing the DNA and protein/organelle damages [18]. Mutated functioning of these
genes results from either genetic change in their DNA coding sequences or from epigenetic
changes in their expression [19,20]. Unrepaired genetic and epigenetic mutations in so many
genes accumulate over many years, and this explains why spontaneous (sporadic) cancers
develop in decades and are in fact diagnosed more frequently in the 70s [9]. However, this
can be anticipated in cases of chronic exposure to environmental mutagenic/epimutagenic
factors (so-called “genotoxic and non-genotoxic carcinogens”) and/or malfunctioning (in
some cases genetically inherited) of the machineries that keep under check the cellular
damages and the abnormal cell behavior [21,22]. However, in some cancers, massive
genomic alterations have been shown to occur as a single catastrophic event in a short
time [23].

Still, the presence of mutated oncogenes and tumor suppressor genes is not sufficient
for the development of cancer because the surrounding microenvironment can build a
barrier that contrasts the proliferation and spread of such transformed cells [24,25]. Even
more intriguingly, tumors without genetic alterations have also been described, which calls
into question the “somatic mutation theory” [26].

2.2. The Virus

What can we say about the “Ugly” guy? SARS-CoV2 was so named due to its high
similarity with SARS-CoV, the coronavirus that caused the very similar respiratory distress
syndrome described by Carlo Urbani in 2003 [27]. COVID-19 may present with mild
to severe flu-like symptoms, though in certain patients, particularly elders and those
with co-morbidities (such as cardiovascular, diabetes, obesity), the disease can rapidly
progress and lead to death following respiratory distress and multi-organ failure arising
from a hyperactivation of the inflammatory response associated with hyperproduction of
cytokines and multiple thromboembolisms [28,29]. The spheric virion (approx. 100 nm
in diameter) consists of an envelope made of a by-layer lipid membrane inserted with
the structural proteins E (Envelope), M (Membrane), and S (Spike, a highly glycosylated



Cancers 2025, 17, 3867 5 of 39

protein that assembles as trimers) and containing a 29.9 kb single-stranded, positive-sense
RNA filament complexed with the Nucleocapsid protein (N) [30]. The virus exploits the
Spike (S) protein to infect the cells through binding to the angiotensin-converting enzyme 2
(ACE2) protein expressed on the membrane of endothelial and epithelial cells of various
organs, particularly the lungs, intestine, and kidneys [30,31]. The SARS-CoV2 Spike protein
presents the unique polybasic sequence (681PRRAR685) for the furin-mediated cleavage
into the two subunits S1 (aa 1–685, that contains the ACE2 binding domain) and S2 (aa
686–1273, that mediates the virion envelope fusion with host cellular membrane), and this
peculiar feature is believed to enhance the virus cellular infectivity and transmissibility [25].
Virus entry is also facilitated by the proteolytic cleavage of the S protein (at the furin site) by
the recipient cell-surface serine protease TMPRSS2, which promotes the virion-cell fusion
mediated by the S2 subunit.

Endocytosis and endosomal cysteine proteases cathepsins B and L can also contribute
to the virus entry and thereafter release of the viral RNA in the cytoplasm. Once entering
the cell, the viral RNA is freed in the cytoplasm and is copied as full length, for inclusion
in the new virions, and as sub-genomic RNA fragments for directing the synthesis of the
structural and accessory proteins. The whole genome codes for the four structural proteins
(E, M, S, and N), two polyproteins (ORF1a and ORF1b), and six accessory proteins (of un-
known function) [30,31]. The polyproteins ORF1a and ORF1b are proteolyzed, respectively,
by the Papain-like protease (PLpro = nsp3) and the 3-chymotrypsin-like protease (3CLpro,
aka Main protease Mpro = nsp5) to generate 16 nonstructural proteins (NSP 1–11 and NSP
12–16, respectively) necessary for viral replication and assembly [30,31]. Virus replication
involves the formation of endoplasmic reticulum-derived double-membrane vesicles that
share similarities with autophagosomes, and the assembled virions then leave the cell by
exocytosis passing through the Golgi complex or the secretory lysosome pathway [32,33].
The autophagy–lysosomal pathway plays a dual role in viral infection and replication:
on the one hand, it can lead to lysosomal degradation of the whole virion, yet on the
opposite, it can be manipulated by the virus to serve as the membrane platform (the double
membrane vesicles) for its replication and assembly [33,34]. SARS-CoV2 can in fact be
directed for lysosomal degradation once it enters via endocytosis or it is in the cytoplasm,
yet certain viral proteins (namely NSP6) can impair the autophagosome–lysosome fusion
and lysosomal degradation of the viral particles resulting in the accumulation of autophago-
somes [33,35]. Autophagy also plays a role in innate and adaptive (MHC-dependent antigen
presentation) immune responses [36]. Therefore, SARS-CoV2 disruption of autophagy in
antigen-presenting cells can compromise the anti-viral immune response. Since autophagy
opposes to inflammasome biogenesis in immune and epithelial cells, the disruption of
autophagy by SARS-CoV2 may lead to inflammasome-dependent pyroptosis in infected
airway cells [37] and cytokine storm and thromboembolisms [38,39]. The question here
is whether cancer patients are more likely to be infected by SARS-CoV2 and, in that case,
what could be the biological explanation. It is a fact that COVID-19 is diagnosed with high
frequency (and often with fatal outcome) in cancer patients, and the simplest explanations
are the hospitalization (where the probability of encountering the virus is high) and immun-
odepression arising from the cancer itself and the treatments [40]. Yet, it has been argued
that, paradoxically, immunodepression could protect SARS-CoV2-infected cancer patients
from the fatal risk of hyper-cytokinemia [41].

As for factors that may favor infectivity in cancer patients, the most obvious ones to
consider are the cell surface ACE2 (the SARS-CoV2 receptor) and TMPRSS2 (the enzyme
that processes the Spike protein to facilitate the cellular entry of SARS-CoV2). High
levels of ACE2 and of TMPRSS2 were found, respectively, in renal, colorectal, and gastric
carcinomas and in prostate, colorectal, and esophagogastric carcinomas [42]. It has been
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hypothesized that patients bearing such cancers are more prone to be infected and to exhibit
the severe form of COVID-19. In prostate cancer cells, TMPRSS2 has been shown to activate
protease-activated receptor-2, triggering downstream signaling pathways associated with
inflammation, metastasis, and invasion (see below). Interestingly, androgen deprivation
therapy decreases the expression of TMPRSS2 and reduces the risk of SARS-CoV2 infection
in prostate cancer patients [43]. In addition to ACE2, other membrane proteins may act as
Spike receptors (or co-receptors) for SARS-CoV2 among which we only mention AXL [44],
Neuropilin-1 [45], and CD147 [46] that are highly expressed on cancer cells and might
explain the increased susceptibility of cancer patients to infection [47–49].

There is also the possibility that susceptibility to SARS-CoV2 infection and to cancer
development shares some genetic and epigenetic factors. Genomic and epigenomic studies
have delineated the host genetic determinants of COVID-19 susceptibility and of the
clinical outcome [50–53]. In a study correlating gene and protein expression of 17 COVID-
19 susceptibility genes with lung cancer prognosis, it was found that the hyperexpression of
FYCO1, CXCR6, XCR1, and TAC4 in cancer cells was protective, whereas that of TMEM65
and OAS1 was a risk factor for SARS-CoV2 infection [54]. Another study found that
the genetic predisposition to colorectal or lung cancer was causally associated with a
decreased or increased susceptibility to COVID-19 severity, respectively, and this association
pointed to the LZTFL1, CCR9, FYCO1, CXCR6, XCR1, and ABO genes [55]. Notably,
gene mutations altering the tertiary structure of the FYCO1 protein were associated with
increased viral replication and spread via enhanced exocytosis, which could explain the
severity of COVID-19 [56].

2.3. The Vaccine

Finally, in 2021, what was hailed as the “Good” guy, i.e., the vaccine, entered the scene.
The two mostly used anti-COVID-19 mRNA vaccines, manufactured by Pfizer-BioNTech
and Moderna, have been approved under emergency circumstances by drug regulatory
agencies (FDA in US and EMA in EU) for the prevention of COVID-19 disease in individuals
16 years of age and older. Approval was based on a 3-month trial demonstrating greater
than 94% (relative) efficacy in preventing infection and severity of outcomes and showing
only mild-to-moderate reactions in the 2 months after the second dose [57,58]. It is to be
stressed that cancer patients were not included in these clinical trials.

Both these vaccines are made of lipid nanoparticles (LNPs) containing the coding
mRNA for the Spike protein. In this sense, they do not act like traditional protein-based
vaccines in that the immunogenic protein is synthesized by the host, which makes this
product more like an “immunomodulatory genetic pro-drug” (for the sake of simplicity,
hereafter I will call it “mRNA pro-vaccine”). It has also been noticed that these “mRNA
pro-vaccines” do not contrast SARS-CoV2 infection, instead they induce the synthesis
of neutralizing IgG that can limit the reproduction and organ spread of the virus, thus
attenuating the clinical symptoms of the disease [59], and for this, they are better known as
anti-COVID-19 vaccines. This is also due to the inability of intramuscular injection of this
mRNA pro-vaccine to trigger the production of anti-Spike mucosal IgA even after three
doses [60].

An exaggerated, yet transient, immune-inflammatory response at the axillary lymph
nodes, occasionally associated with alterations in the ipsilateral parenchyma, following
anti-COVID-19 mRNA vaccination, is a quite frequent finding and might raise the suspicion
for malignancy [61,62].

Of more concern is the fact that the multiple vaccinations with these products shift the
immune response to a tolerant response where the inert subclass IgG4 are predominantly
produced [63], particularly in patients that are infected after the vaccination [64]. The
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question here is “How much has it revealed to be useful and safe for cancer patients to be
vaccinated for COVID-19 with these mRNA pro-vaccines?”. Cancer patients are generally
immunosuppressed, as a side effect of both the treatments (many chemotherapeutics are
myelosuppressive) and the disease itself, and this makes them more vulnerable to infections,
and hospitalization itself increases the risk of exposure to bacteria and viruses. Not surpris-
ingly, patients with solid or hematologic cancers, and particularly those with metastases,
were shown to be more susceptible to contract the severe form of COVID-19 [65,66].

Anti-influenza (traditionally made) vaccines are routinely administered to onco-
hematologic and solid cancer-bearing patients, based on the assumption that immunization
will protect these vulnerable patients from severe outcomes with no side effects. Based
on these considerations and on the results of the clinical trials claiming a relative (not
absolute) 95% efficacy [57,58], the anti-COVID vaccination has been prioritized for cancer
patients [65,67], neglecting the fact that those clinical trials did not include such a typology
of patients [57,58]. Several studies have shown that influenza vaccination fails to elicit the
expected protection in patients with solid cancer or hematological malignancies [68,69].
It has also been emphasized that cancer patients should not be vaccinated while under
radio- or chemotherapy because of the inefficacious immune response [70]. ESMO’s press
release on 20 Sept 2021 emphasized the data reported at the ESMO Congress 2021 prov-
ing the safety and the protective efficacy of two or, better, three vaccine doses in cancer
patients (https://ecancer.org/en/news/20966-esmo-2021-evidence-suggests-that-covid-
vaccines-do-protect-patients-with-cancer; accessed on 27 June 2024). A multicenter study
in a cohort of 84 non-vaccinated and 49 vaccinated (majority with mRNA-based vaccine;
one-third with three doses) cancer patients who tested positive for SARS-CoV2 reported
that in the latter group, COVID-19 was milder and the vaccine better protected from
COVID-19-related death [71]. These reports were based on a relatively short period of
observation and from a few cohorts. A few months later (in June 2022), the first real-world
data analysis showed that breakthrough infections, even with severe outcomes, may occur
in cancer patients vaccinated with mRNA-based anti-COVID-19 vaccines (the rate was
lower for Moderna vaccine compared to the Pfizer vaccine) [72]. Compared with healthy
controls, cancer patients receiving three doses of the Comirnaty (Pfizer-BioNTech) mRNA
vaccine showed a lower cell-mediated immune response and lower anti-Spike antibody
titers, indicating the need for additional boosters to provide protection [73,74].

Other studies confirmed that vaccinated cancer patients can contract the SARS-CoV2
infection and that those under treatment, particularly the hematologic patients receiving
anti-CD20 therapy, have an increased risk for severe COVID-19 [12,14,75,76].

Patients bearing solid cancers under treatment showed sub-optimal seroconversion
in response to anti-COVID-19 mRNA pro-vaccine [77] and may develop serious immune-
related adverse effects [78]. Compared with matched healthy patients, the humoral immune
response to BNT162b2 (Pfizer-BioNTech Comirnaty) mRNA pro-vaccine was markedly
lower in B chronic lymphocytic leukemia patients under treatment with Bruton’s Tyrosine
Kinase inhibitors or venetoclax ± anti-CD20 [79].

Corticosteroids are routinely administered to cancer patients as co-medication and,
given their immune-suppressive activity, one may expect a low vaccination efficacy in
these patients [80]. Similarly, since PD-1 blockade impairs the CD8 response to antigenic
stimulation [81], it is likely that therapies with immune-checkpoint inhibitors in solid
cancer patients would abrogate the T-cell specific response to COVID-19 vaccination. While
chemotherapy has been reported to interfere with seroconversion, immunotherapy appears
to not compromise the humoral response to mRNA-anti-COVID-19 vaccination in cancer
patients; yet in these patients, the production of autoantibodies has been reported, raising
concerns about the risk of developing autoimmune diseases [82]. Autoimmune-related

https://ecancer.org/en/news/20966-esmo-2021-evidence-suggests-that-covid-vaccines-do-protect-patients-with-cancer
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adverse effects have been reported after the third dose of COVID-19 mRNA pro-vaccine
(Comirnaty) in cancer patients under treatment with immune-checkpoint inhibitors [83].
These observations caution that introducing mRNA-based immunostimulants along with
immunosuppressive therapies in the context of a dysregulated immune system (such as in
cancer patients) may have unpredictable consequences. The mRNA anti-COVID-19 vaccina-
tion exacerbated the pro-inflammatory Th17 immune response along with neutrophilia in
oncologic patients, particularly in those recovered from COVID-19 [84]. Since this condition
poses the risk of triggering cytokine storm, it requires caution in vaccinating cancer pa-
tients with previous SARS-CoV2 infection, and this is of particular concern when multiple
boosters are administered. A recent literature review concluded that COVID-19 vaccination
was generally well tolerated, safe, and effective in cancer patients, with rare severe side
effects including necrotizing myopathy, thromboembolisms, and allergic reactions [85].
Yet, this same study also revealed that protection was moderate and limited in time, since
despite the vaccination, cancer patients could get infected, with hospitalization and a high
risk of mortality, requiring continuous booster doses as a preventive measure [85]. Indeed,
T-cell response (which is the most important to combat viral infections) in cancer patients
was weak even after the third dose [73]. In this regard, concerns have been raised about
the possibility that multiple boosters could induce CD8+ T-cell exhaustion along with
increased expression of PD1 [86]. In line with the above, patients with chronic lymphocytic
leukemia showed an impaired CD4+ and CD8+ T-cell memory response to viral Spike
eight months after two doses of the Comirnaty (BNT162b2) mRNA vaccine [87]. Overall,
these studies question the assumption that COVID-19 vaccination is beneficial in terms
of protection against COVID-19 infection and clinical outcomes and instead raise impor-
tant concerns about its safety for cancer patients, especially because short-term protection
imposes continuous booster vaccination.

3. The Complex Interplay Between COVID-19, Anti-COVID-19 mRNA
Pro-Vaccine, and Cancer

We cannot close this first introductory section without mentioning case reports suggest-
ing a paradoxical effect of the SARS-CoV2 infection and of the anti-COVID-19 vaccination,
in combination or alone, associated with a partial and transitory regression of cancer. In a
small cohort of cancer patients undergoing checkpoint immunotherapy, an increase in the
absolute number of circulating NK cells, not of T and B cells, occurred four weeks after the
third dose of the Comirnaty vaccine, and these patients showed a reduced likelihood of dis-
ease progression within six months of vaccination [88]. To be noted, this is the same cohort
in which one-fifth of the high antibody responders to vaccination developed autoimmune
thyroiditis [83].

A very recent study shows that certain patients bearing aggressive forms of skin
and lung cancer who received COVID-19 mRNA vaccines within a hundred days of their
immune checkpoint therapy experienced a surge in type I interferon response that enhanced
T-cell response and led to improved survival by a few months [89].

In their review, Meo et al. describe the clinical cases of nine patients with hematologi-
cal malignancies (including lymphomas, leukemias, and myelomas) and five patients with
solid tumors (two renal tumors and three colorectal tumors) in whom a spontaneous tem-
porary remission (the longest was up to 12 months) was observed following SARS-CoV2
infection [90]. The authors’ explanations for this effect include a possible direct oncolytic
effect of the virus in infected malignant lymphocytes and the stimulation of T-cytotoxic cells
by pro-inflammatory cytokines within the solid tumor microenvironment, though no mech-
anistic studies were performed to confirm such biological and immunological activities.
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In the literature, there are also three cases of partial cancer regression following the
anti-COVID-19 vaccination. In one case, a patient diagnosed with left parotid myoepithelial
carcinoma and possible metastatic nodules in the lung received two doses of the Moderna
mRNA-1273 COVID-19 vaccine, to which they experienced a severe adverse reaction that
resolved within two weeks, and over the next 9 months, showed a 73% reduction in tumor
burden associated with a phenotypic shift in the tumor immune microenvironment from
a pro-tumorigenic (characterized by M2 macrophages) to a pro-inflammatory anti-tumor
phenotype enriched in CD8+ T cells [91]. In a patient affected by primary cutaneous
anaplastic large-cell lymphoma (pcALCL) showing recurrence and multiple lung nodules
(suspicious of metastases) after therapy, a marked regression of the cervical lymph node
and lung lesions was observed one week after administration of one dose of Comirnaty
vaccine, suggestive of a possible causal correlation [92]. The authors, however, correctly
mention that pcALCL frequently undergoes spontaneous regression. A third case refers to
a patient diagnosed with cutaneous Merkel Cell Carcinoma (MCC) who experienced the
regression of an enlarged axillary metastatic lymph node after the third dose of Comirnaty
vaccine [93]. As noticed by the authors, despite being highly aggressive, spontaneous
regression of MCC is relatively frequent. The latter two cases may be explained with the
intrinsic propensity of spontaneous regression of small metastatic lesions possibly favored
by vaccine-induced immune stimulation. Finally, there is a case of a patient who had
recurring hepatocarcinoma four months after partial hepatectomy and six months later
showed regression of the hepatic lesion after three doses of Moderna mRNA-1273 and
SARS-CoV2 infection [94]. This latter case points to the complex interplay between the host
immune response in cancer patients, COVID-19, and mRNA anti-COVID-19 vaccination.
These few case reports remain anecdotal and present important limitations for establishing
any causal correlation or generalizability, especially when considering the lack of clear
mechanistic explanation, insufficient reproducibility, and the larger number of cases where
such an effect has not been reported or, instead, an opposite effect has been reported, as
discussed in the next paragraphs.

4. Can SARS-CoV2 and/or Anti-COVID-19 mRNA Pro-Vaccine Cause
Cancer? Putting the Puzzle Pieces Together

In this second part, we will address the question whether and how the SARS-CoV2
and the anti-COVID-19 mRNA pro-vaccine can cause cancer or worsen the prognosis of
pre-existing cancers.

We have learned that cancer is a dynamically evolving proliferative and invasive
disease arising from the accumulation of genetic and epigenetic changes in the parenchy-
mal cells whose growth and spread are facilitated by microenvironmental factors. Pre-
neoplastic nodules, micrometastases, and residual disease (after surgical debulking and
anti-cancer therapy) may remain stable for decades in a dormant state due to insufficient
blood supply (angiogenic dormancy), due to efficient immune suppression (immune-
mediated dormancy), and due to up-regulated autophagy (autophagy-mediated cancer
cell dormancy) [95–97]. Tissue inflammation is the main cause of dormancy interruption
and cancer outgrowth, by promoting neoangiogenesis and immune suppression, while
inhibiting cellular autophagy [95,98–100]. The role of growth factors and hormones, neoan-
giogenesis, inflammation, and immune-suppressive cells in the microenvironment in the
growth of metastases was outlined by Stephen Paget (1889) in his “seed and soil” the-
ory [101]. Another important feature of cancer cells is the alteration of the glucose and
amino acid metabolisms so that glucose is preferentially glycolyzed with the production of
lactic acid while mitochondria preferentially utilize glutamine for the Kreb’s cycle [102].
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Therefore, to induce or promote carcinogenesis, the virus and the mRNA pro-vaccine
must possess one or more of the following abilities: 1. induce gene mutagenesis; 2. induce
epigenetic changes; 3. interfere with the oncogenic and tumor suppressor pathways
that control cell behavior and fate impinging on cell proliferation and cell migration,
autophagy, cell survival and cell death, and energetic metabolism; 4. induce inflammation,
angiogenesis, and lymphopenia in the tissue microenvironment.

While the possibility that the viral genetic code or the reverse-transcribed pro-vaccine
mRNA could integrate into the cellular genome and cause gene mutagenesis is deemed
extremely unlikely, all other events have indeed been associated with SARS-CoV2 infection
and anti-COVID-19 vaccination. These concepts are illustrated schematically in Figure 1. 
 

 
 
 
  

Figure 1. SARS-CoV2 and anti-COVID-19 mRNA pro-vaccine may trigger several pro-carcinogenic
pathways while impairing anti-cancer processes. The virus and the mRNA pro-vaccine share some
of these effects triggered by the Spike protein (though the vaccinal Spike is modified), while other
effects are unique to the virus (triggered by viral proteins) or to the pro-vaccine (the LNP), as detailed
in the following sections.

Although some events are uniquely associated with the peculiar individual physical-
chemical structure of the virus or anti-COVID-19 mRNA pro-vaccine, we will see that
both share the characteristics to trigger the very same events. In particular, the viral Spike
protein and that produced by the vaccine mRNA, being structurally very similar, will
likely trigger the same reactions. Another major cancer-promoting mechanism shared by
SARS-CoV2 infection and anti-COVID mRNA pro-vaccines is inflammation.

5. The SARS-CoV2 Virus and the Cancer
Recent studies pointed out the possibility that SARS-CoV2 infection might create

conditions for cancer progression [103,104]. A special and obvious suspect is IL-6 due to
its role in COVID-19-associated inflammation [105]. However, as we will see in detail,
many other factors and pathways can link SARS-CoV2 infection with cancer, with the Spike
protein as the main trigger.
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5.1. Oncogenic Potential of SARS-CoV2 Receptors ACE2 and AXL

In SARS-CoV2-infected patients, as well as in anti-COVID-19 mRNA pro-vaccinees,
membrane-bound and circulating ACE2 levels are decreased due to Spike attack, and
this has been linked to inflammation, thrombosis, and hypertension [106–108]. Could the
depletion of ACE2 have a role in carcinogenesis? ACE2 is a peptidase that can be found as
membrane bound on the surface of endothelial and epithelial cells and as a soluble form
in the circulation. It has a pivotal role in the Renin–Angiotensin System, which controls
cardiovascular functioning. In brief, the liver secretes in the blood angiotensinogen that is
processed to angiotensin I (AngI) by Renin (secreted by the kidneys), and AngI is further
processed by the enzyme ACE (angiotensin converting enzyme; expressed particularly,
not exclusively, in the epithelial cells of the lungs) into the vasoconstrictor AngII, which
can eventually be processed by ACE2 into the vasodilator peptide Ang1-7. Thus, while
AngII favors hypertension, Ang1-7 contrasts hypertension, dampens inflammation, and
prevents thromboembolisms [108]. More than that, AngII has mitogenic and angiogenic
activities and inhibits cancer cell apoptosis, whereas Ang1-7 inhibits angiogenesis and
cancer growth [109,110]. Consistently, ACE2 was reported to inhibit angiogenesis and
to prevent metastasization in breast and lung cancer models [111–113]. ACE2 deficiency
was shown to increase the risk of hepatocarcinogenesis and the resistance to anti-PD-
L1 immunotherapy, while promoting a permissive tumor microenvironment associated
with M2-like macrophages, angiogenesis, and immunosuppressive myeloid cells [114].
SARS-CoV2 promoted the Epithelial-to-Mesenchymal Transition (EMT) of infected lung
cancer cells, associated with high expression of ZEB1 and AXL and decreased expression of
membrane ACE2 [115].

In benign mammary epithelial cells transgenically expressing ACE2, the challenge
with SARS-CoV2 Spike protein induced the transcription of SNAIL and acquisition of a
migratory and invasive mesenchymal phenotype [116]. Further, the hyperglycosylated
Spike protein from the SARS-CoV2 gamma variant was shown to induce SNAIL-mediated
EMT and to promote in vivo metastasization of xenografted human breast cancer cells [117].

Thus, depletion of ACE2 results in the loss of an anti-cancer barrier against the growth
and spread of pre-existing (micro)tumors, favoring metastasization [118–120]. In this
context, it is worth mentioning that ACE2 can be targeted by MDM2 (mouse-double-
minute 2) and thereafter ubiquitinated and degraded via proteasome [121]. To be noted,
MDM2 is considered an oncogenic protein since it can direct the proteasome degradation
of TP53, a major tumor suppressor protein (see Section 5.3). It is tempting to speculate that
Spike-induced ACE2 depletion might leave MDM2 free to bind and direct the degradation
of TP53, thus further increasing malignancy (more in Section 5.3).

Another receptor for SARS-CoV2 potentially linking COVID-19 to cancer is AXL
(Anexelekto). This is a transmembrane receptor protein (its physiological ligand is GAS6)
that plays an important role in cancer progression, as its activation promotes cell prolifera-
tion, EMT, and metastasization [122]. It is worth noting that ACE2 and AXL are involved
in other cancerogenic pathways, as will be explained in detail below.

5.2. SARS-CoV2 Spike Protein Can Trigger Oncogenic Signaling Pathways

Human lung carcinoma A549 cells (type II pneumocyte) incubated with SARS-CoV(1)-
like particle or its isolated Spike showed the Casein Kinase II-mediate phosphorylation of
ACE2 and the activation of the Ras-ERK (extracellular regulated kinase)-AP1 pathway [123].
More recently, the S1 subunit of SARS-CoV2 Spike protein was shown to trigger the ERK
signaling in lung endothelial cells, and this effect was not mediated by the interaction
with ACE2 [124]. In lung carcinoma A549 and in hepatocarcinoma Huh-7.5 cells, the
SARS-CoV2 Spike activated the MAPK-NF-κB pathway and downstream induction of IL-6
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synthesis [125]. In lung epithelial cells, SARS-CoV2 was shown to activate the Epidermal
Growth Factor Receptor (EGFR)-AKT survival signaling pathway along with stimulation
of mitochondrial ATP production [126]. This mechanism is believed to help the virus to
sustain its replication by keeping alive and boosting the energy metabolism of the infected
cells in the early phase of infection.

The (Ras-)ERK/MAPK and the AKT pathways drive transcription, protein synthesis,
cell proliferation, and cell survival, and are hyperactivated in cancer cells [127,128].

Additionally, the Spike proteins were shown to interact with the Estrogen receptor
and induce ERα-dependent cell proliferation of breast cancer cells [129].

Finally, an in silico study found that the viral Spike protein potentially interacts with
and activates the EGFR and VEGFR pathways [130].

Whether the above signaling triggered by viral Spike could result in the aberrant
survival and stimulation of proliferation and migration of infected pre-neoplastic cells has
not been investigated yet, and it cannot be excluded.

5.3. SARS-CoV2 Spike Protein Can Inactivate Tumor Suppressor Signaling Pathways

TP53 and BRCA1/2 are two major tumor suppressor proteins that play a major
role in cancer progression and therapy resistance [131,132]. TP53 (p53) has nuclear and
cytosolic functions: in the nucleus, as a homo-tetramer, it binds the DNA to direct the
transcription of genes that regulate the cell cycle, DNA repair, apoptosis, autophagy, and
cell metabolism; in the cytoplasm, as a monomer, it directs the BAX oligomerization on
the outer mitochondrial membrane and lysosome membrane for inducing cell death [133].
Certain p53 mutants unable to bind the DNA may act as “dominant negative” and impair
apoptosis and autophagy [134].

A complex interplay between p53 and the SARS-CoV was previously found: p53 was
shown to be able to inhibit viral replication and, on the other hand, the virus can promote
the ubiquitination and degradation of p53 [135]. Given the similarity between the domains
involved in SARS-CoV and SARS-CoV2, it is reasonable to hypothesize that the latter also
has a similar relationship with p53.

In this context, an in silico study found that the C-terminal domain of the heptic
repeat-2 region of S2 subunit (which plays a role in membrane fusion) has the potential
to bind p53, BRCA-1, and BRCA-2 proteins [136]. Should this interaction be confirmed, it
would open a dangerous scenario. In fact, the possible sequestration of these proteins by
the S2 Spike protein would have catastrophic consequences in the cell because of the loss
on the control of genome integrity and cell behavior.

Very recently, Zhang and El-Deiry [137] have tested this hypothesis in various
cancer cell lines in which the SARS-CoV2 protein was transgenically expressed. Co-
immunoprecipitation did not confirm the interaction between S2 and p53, likely because the
two proteins reside in different compartments (cytosol and nucleus, respectively). However,
these authors found that the exogenous expression of the Spike protein attenuated the
transcriptional activity of p53, and this was not due to the MDM2-mediated degradation of
p53 [137]. Of note, when the cancer cells were treated with the DNA-damaging chemother-
apeutic drug cis-platinum, the Spike-expressing cells could not transcribe p21 for blocking
the cell cycle and to induce cell death.

When the AKT pathway is activated by growth factor receptors, p53 is degraded by
the proteasome via MDM2 and this is more likely to occur when ACE2, an alternative
substrate of MDM2, is less abundant in the cell. SARS-CoV2 has been shown to trigger the
EGFR-AKT pathway and to deplete ACE2 (see Sections 5.3 and 5.4), a combination that
could favor p53 degradation.
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5.4. Spike Protein Induces Cell–Cell Fusion: A Step Toward Cancer Transformation?

Cell–cell fusion is a well-known phenomenon characteristic of cancer leading to hybrid
cells with mixed behavior due to the combined contribution of not only the nuclei but also
of cytoplasmatic organelles, among which mitochondria and lysosomes may play a major
role [138]. Within the tumor microenvironment, cancer cells may increase their malignant
potential by fusing with mesenchymal stem cells, fibroblasts, and macrophages [139]. In
addition, the formation of such syncytia within the tumor microenvironment could promote
the immune evasion of tumor cells following the entrapment of T and NK cells (forming
“cell-in-cell structures”), thus leading to lymphopenia [140]. Cell fusion is relatively rare
in spontaneous tumors, yet this event could be promoted by SARS-CoV2 infection. The
presence of the polybasic furin-sensitive site enhances the fusogenic property of the S2
subunit of the Spike protein, which can lead to the formation of syncytia [140]. This
happens when a SARS-CoV2-infected cell exposes on the membrane the Spike protein
that interacts with the ACE2-TMPRSS2 or ACE2-AXL-NRP1 proteins expressed on a
neighboring cell [141,142]. This process is believed to enhance cell–cell infectivity.

Worth noting, hydroxychloroquine, an inhibitor of endosomal–lysosomal acidification
and of autolysosome formation, was found to inhibit this process [140], which gives credit
to the use of this drug for the prophylaxis of COVID-19 [143].

Given that ACE2 and AXL are highly expressed in cancer epithelial cells and in stro-
mal/mesenchymal cells, the ability of Spike protein to promote the fusion of neighboring
cells expressing these proteins raises concerns about the possible formation of hybrid tumor
cells with increased metastatic potential [144,145].

5.5. SARS-CoV2 Replication Dysregulates Autophagy: A Step Toward Carcinogenesis?

Autophagy is a lysosomal-driven degradation process that eliminates damaged and
redundant subcellular structures and maintains tissue homeostasis, keeping under check
cell proliferation and cell migration [146]. Autophagy is meant to entrap within the
autophagosome (a double-membrane vesicle arising from the endoplasmic reticulum)
any cytosolic protein agglomerate and organelle that perturbs cell homeostasis and direct
their degradation by fusing with lysosomes, acidic organelles endowed with a wide range
of hydrolytic enzymes [146]. Perturbation of the autophagy pathway has negative impacts
on cell homeostasis and might favor the malignant phenotype [147]. Notably, dysregulated
autophagy in cancer cells may instead favor survival against anti-cancer therapies [148].
As we will see, dysregulation of autophagy occurs in SARS-CoV2-infected cells.

Autophagy is involved in coronavirus infection, replication, and viral spreading.
SARS-CoV2, like many other viruses, can exploit this vesicular process for its own replica-
tion and egression from the cell [149,150]. Particularly, the nonstructural proteins NSP15
and NSP6 can hijack the autophagy pathway so that the former induces the formation
of autophagosomes while the latter alters the acidification of the lysosomes impairing
their fusion with autophagosomes [149]. In so doing, the virus will escape the lysosomal
degradation and instead will divert the nascent autophagosomes versus the formation of
double-membrane vesicles for its assembly [35,149]. Another study found that SARS-CoV2
ORF10 localizes at the mitochondria where it binds to mitochondrial antiviral signaling pro-
tein and directs its degradation via mitophagy [151]. In SARS-CoV2 infection, autophagy
plays an important role in protecting cells from death [152], for instance, it protects from
pyroptosis-infected immune cells by degrading the inflammasome [37,38]. Finally, it is
worth mentioning that FYCO1 (FYVE and coiled-coil domain autophagy adaptor 1), one of
the SARS-CoV2 infection susceptibility genes [56], encodes a RAB7 adaptor involved in
autolysosome formation, and it is considered a novel oncogene in that it promotes EMT
and migration in breast and cervical cancer cells [153,154].
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5.6. SARS-CoV2 Alters Mitochondrial Respiration and Induces Oxidative Stress

A link between glucose metabolism and SARS-CoV2 infection emerged with the
observation that uncontrolled glycemia was a risk factor for COVID-19 [155]. An important
feature of cancer cells is the altered metabolism of glucose known as the Warburg effect by
which cancer cells avidly uptake glucose that is fully glycolyzed in the cytosol (to provide
substrates for nucleoside synthesis) instead of being completely oxidized via mitochondrial
respiration [156]. This divergence in the glucose metabolism is directed by the oncogenic
transcription factor HIF-1α (Hypoxia-Inducible Factor-1α), that besides the genes of the
glycolytic pathway, also transcribes, among others, genes involved in angiogenesis (VEGF,
vascular endothelial growth factor) and cell motility (HGF, hepatocyte growth factor),
inflammation, and tumor microenvironment remodeling [157].

It has been reported that SARS-CoV2 induces the glycolytic shift in infected lung
macrophages [158]. Mechanistically, the SARS-CoV2 ORF3a induces mitochondrial ROS
production that stabilizes HIF-1α, which then promotes glycolysis [159]. A similar gly-
colytic shift might also occur in SARS-CoV2-infected epithelial cells, and this would be an
add-on in the case of pre-neoplastic cells.

To close the circle, IL-6, which drives the cytokine storm in COVID-19, induces the
glycolytic shift in cancer cells and promotes the phenoconversion of stromal fibroblasts
into permissive cancer-associated fibroblasts through inhibition of autophagy [160,161].

In cancer cells, there is an interplay between the altered glucose metabolism and the
mitochondrial respiration [102]. Dysfunctional mitochondria produce oxidative radicals
(ROS) that can trigger the inflammasome with production and secretion of inflammatory
cytokines. The role of ROS in cancer development and progression depends on how much
they are produced: low to moderate levels trigger cell proliferation and migration, high
levels of ROS damage the proteins, membranes, and DNA and induce cell death [162].
Notably, ROS may induce or inhibit autophagy (and mitophagy, particularly) with opposite
consequences in tumorigenesis and metastasization [163].

SARS-CoV2 infection has been shown to affect mitochondrial respiration. Disruption
of mitochondrial morphology and functioning with over production of ROS in peripheral
leukocytes and muscles is a common finding in COVID-19 patients [164]. Thus, SARS-CoV2
infection of pre-malignant or dormant tumor cells could elicit such effects triggering tumor
growth and invasion.

5.7. SARS-CoV2 Triggers the Inflammatory Cytokine Storm and Induces Immune Cell Depletion
Leading to a Microenvironment Permissive for Relapses and Metastasis

SARS-CoV2-infected monocytes and macrophages isolated from the lungs of COVID-
19 patients produce huge amounts of pro-inflammatory cytokines such as IL-1β, TNF-α,
IL-6, and IFN-α, β, and λ, which precedes the so-called cytokine storm and meanwhile
abates the T-cell immune response [158]. This production of cytokines was directed by HIF-
1α in response to mitochondrial ROS and could, in fact, be prevented by antioxidants such
as N-Acetyl Cysteine [158]. Of note, the secretion of SARS-CoV2-infected monocytes, and
particularly IL-1β, inhibited the proliferation of CD4+ and CD8+ T cells and increased the
surface expression of PD-1 in CD4 lymphocytes, indicative of immune cell exhaustion [158].
These findings are consistent with the reported association between the cytokine storm
(particularly IFN-γ and TNF-α) and lymphopenia [165,166]. In infected patients, hyper-
production of proinflammatory cytokines (particularly, IL-6, TNF-α, and IFN-γ) may follow
the accumulation of undegraded angiotensin II and overactivation of its type 1 receptor
(AT1R) because of Spike-induced down-regulation of ACE2 [167].
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Pro-inflammatory cytokines recruit myeloid-derived suppressor cells that create a mi-
croenvironment permissive for tumor growth and development of metastases by inhibiting
the T-cell anti-tumor immune response [168].

Further concern is that the inflammatory response and immune system dysregulation
associated with SARS-CoV2 could create the conditions for the awakening of dormant tu-
mor cells [169,170]. Intriguingly, AXL, the receptor for Spike SARS-CoV2 highly expressed
in cancer cells, has been shown to be essential for TGF-β2-induced dormancy of metastatic
cancer cells [171]. Adding to the complexity, the GAS6-AXL axis induces autophagy in
macrophages, inhibiting the activation of the inflammasome and the release of IL-1β and
IL-18, thus mitigating inflammation [172]. IL-6, the main culprit of cytokine storm [173], is a
pro-tumorigenic cytokine as it promotes cancer cell proliferation and migration, interrupts
cancer cell dormancy, and worsens the prognosis of cancer patients through inhibition of
autophagy [98,174].

It is unknown whether these scenarios can occur in the tumor context of patients
infected with the virus, an aspect that deserves to be investigated in depth. The observation
that the risk of cancer-related mortality and lung metastasis is higher in SARS-CoV-2-
infected patients and the demonstration that IL-6 associated with SARS-CoV2 infection
can awaken dormant breast carcinoma cells metastasized in the lung of mice support this
possibility [175]. The cellular and systemic effects and possible cancer-related consequences
of SARS-CoV2 infection are schematically illustrated in Figure 2.

 

2 

 
 
 

 
  Figure 2. SARS-CoV2 infection can elicit pro-tumorigenic effects by affecting cell and stromal
homeostasis. In the cell, spike and other viral proteins may cause ACE2 depletion, trigger cell sur-
vival and proliferation pathways, inhibit autophagy, promote cell–cell fusion, and alter metabolism
with ROS production, while in the stroma, the viral infection may eventually lead to an inflam-
matory and immune-depleted tumor-permissive microenvironment. For details, see the text. Ar-
rows up indicate “induction, up-regulation, stimulation”; arrows down indicate “depletion, down-
regulation, inhibition”.

6. The Anti-COVID-19 mRNA Pro-Vaccine and the Cancer
Both the anti-COVID-19 mRNA pro-vaccines BNT162b2 and mRNA-1273 consist

of lipid nanoparticles containing the full length mRNA (of 4284 and 4004 nucleotides,
respectively) encoding the Spike protein; however, they differ in the 5′ and 3′ untranslated
regions, the total amount of mRNA (30 µg/0.3 mL and 100 µg/0.5 mL, respectively),
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and the chemical composition of the lipid nanoparticles (the cationic ionizable lipid is
ALC-0315 and SM102, respectively) [176]. To prevent the prompt degradation of the
mRNA pro-vaccine within the transfected cells, all the uridines have been replaced by
N1-methyl-pseudouridine, and several codons have been modified in their third nucleoside
to optimize translation efficiency [176]. The vaccine Spike is identical to the viral protein (it
has the furin-sensitive cleavage site for splitting into the S1 and S2 subunits) except for the
substitutions of the amino acids 986 K and 987 V with two prolines to fix the protein in the
pre-fusion form [176]. Though stabilized in the prefusion conformation, the vaccine Spike
can bind to ACE2 and be cleaved by furin [177]. The above modifications may explain why
the mRNA and the intact protein or fragments of the vaccinal Spike persist in the circulation
of the vaccine for long time and can be found in organs distant from the injection (deltoid)
site [178–181]. Additionally, the vaccinal mRNA and Spike may travel throughout the body
with the exosomes [182], which increases the risk of triggering epiphenomenal reactions
associated with severe adverse effects in various organs [108,183,184]. The mRNA vaccine
technology relies on the endogenous synthesis of the immunogen (in this case, the Spike
protein) that is further processed by antigen processing cells to instruct the lymphocytes
for producing neutralizing antibodies and to mount a T-cell immune response [185].

The facts that the exogenous protein driven by a modified mRNA is synthesized
within the host cells and that portions of it or of its fragments (since it can be cleaved by
furin) can be exposed on the membrane of any cell (since the mRNA is delivered via lipid
nanoparticles) increase the risk of deceiving the immune system, which adds on the tissue
damages brought by the Spike-ACE2 interaction. The serious and sometimes (fortunately
rare) fatal adverse effects associated with mRNA COVID-19 vaccination have been covered
in other articles [108,183,184,186,187] and are not the subject of this article as here we focus
on the potential pro-carcinogenic effect of the COVID-19 vaccination with such products.

There are several mechanisms and pathways that could link the mRNA anti-COVID-
19 vaccination with an increased risk of cancer progression, some of which are common
with those connected with SARS-CoV2 infection (the Spike; the inflammatory cytokines)
and others that are unique to the mRNA pro-vaccine being associated with its peculiar
composition (the presence of pseudouridine; the presence of impurities such as truncated
mRNAs and traces of DNA; the presence of inflammatory cationic lipids) and with the
vaccination schedule that comprises several shots in a too-short time. The latter has
implications as it exposes the vaccinated person to a greater risk of infection, thus facilitating
exposure to the side effects of SARS-CoV2 described above.

Unlike the viral Spike protein, the vaccine spike protein has not been associated with
dysregulation of autophagy and energy metabolism. However, other factors may link the
vaccine Spike protein to processes that potentially increase the risk of carcinogenesis as we
will illustrate in the next paragraphs.

6.1. The Vaccinal Spike Displays Pro-Carcinogenic Properties Like Viral Spike

The vaccinal Spike shares very similar structural characteristics with viral Spike in
terms of binding to surface receptors and thus triggering similar pathways.

In brief, recalling what has been documented for the viral counterpart, vaccinal Spike
has the potential to (i) deplete membrane-bound and soluble ACE2 (see Section 5.1);
(ii) trigger the oncogenic ERK/MAPK, EGFR-AKT, AXL, and SNAIL-TGFβ pathways (see
Sections 5.1 and 5.2); (iii) interact with ERs in breast cancer cells (see Section 5.2), (iv) in-
terfere with tumor suppressor TP53 stability and transcriptional activity (see Section 5.3);
(v) induce the formation of syncytia (see Section 5.4). The consequent effects of these
actions include the promotion of cell proliferation and cell migration, induction of EMT,
and inhibition of cell death, as discussed in detail in Section 5.
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Importantly, the brief protection induced by mRNA pro-vaccines against COVID-
19 requires frequent and closely spaced vaccinations, resulting in a tolerogenic immune
response and subsequent increased susceptibility to SARS-CoV-2 infection, which creates
the conditions under which these non-genotoxic pro-carcinogenic pathways are likely to
be activated.

6.2. Molecular, Biochemical, Genetic, and Epigenetic Effects of the mRNA Pro-Vaccine:
Hypothesizing the Unpredictable

Due to patent protection, data on the manufacturing technology and quality control
of COVID-19 mRNA pro-vaccines are scarce [176]. What follows is therefore inevitably
theoretical and based on the limited information available.

T7 RNA polymerase-directed in vitro transcription of a DNA template yields the
desired RNA, but it also has some drawbacks such as the generation of unwanted RNA
species, including double-strand RNA and a mixture of short abortive transcripts of various
length. The presence in the market of different batches of vaccine with different composition
due to non-standardized manufacturing and quality control remains controversial, denied
by some studies and confirmed by other studies [176,188]. In this regard, some batches of
BNT162b2 were found to contain on average only 50% of intact Spike-coding mRNA, the
rest being fragments of various length [188,189]. These fragments could theoretically impair
the synthesis of target proteins functioning as sponges for a variety of cellular mRNAs.
However, the sequence of these fragments has never been disclosed, and therefore, their
possible interference on the translation of cellular mRNAs remains speculative.

The replacement of uridines with N1-methylpseudouridine deceives the reading
machinery in the translation of the mRNA into protein, causing frameshifts in the reading
of the codons with the consequence of synthesizing unintended proteins [190] that might
have unpredicted consequences [191]. Quite reassuring, a synthetic mRNA resembling the
BNT162b2 Spike-coding mRNA with 100% N1-methylpseudouridine was found to translate
into intact Spike protein when expressed in HEK293 cells [192]. In vivo, the story goes
differently. N1-methylpseudouridine containing mRNAs does not efficiently stimulate
dendritic cells, with reduced production of type I Interferon (which exerts anti-cancer
functions) and decreased T cytotoxic activity, and this may be relevant for the antitumor
immune response [193]. Consistently, BNT162b2 vaccination modulated the innate immune
responses by increasing the production of inflammatory cytokines IL-1β and IL-6, while
decreasing that of IFN-α [194]. Such immune-suppressive and tumor-permissive scenario
was reported in an in vivo (OVA-expressing) melanoma model of cancer vaccination with
N1-methylpseudouridine modified mRNA encoding the transgenic tumor antigen (OVA,
ovalbumin) encapsulated in lipid nanoparticles [195]. While the unmodified mRNA OVA
vaccine elicited antitumor effects characterized by robust infiltration of CD40+ DCs and
OVA-specific IFN-γ secreting T cells, the vaccination with pseudo-uridine modified mRNA
greatly decreased immunogenicity (decreased IFN-γ production and TNFα-producing
CD8+ T cells) in spite of the highest translation efficiency, resulting in increased tumor
growth and number of lung metastases [195].

RNA adenosine-to-inosine editing is a co-transcriptional process catalyzed by adeno-
sine deaminase ADAR1 acting on double-stranded portions of immature RNA and poten-
tially resulting in transcriptome and proteome changes, as inosine is read as guanosine.
RNA editing may involve coding and non-coding regions and can affect stability, alterna-
tive splicing, and translation of mRNAs as well as the processing and specific targeting
of non-coding RNAs. Up-regulation of ADAR1 expression and overall increases in RNA
editing have been associated with the malignant phenotype [196]. A recent study showed
that the expression of ADAR1 in the blood of vaccinees increases with the number anti-
COVID-19 mRNA pro-vaccine doses [197]. While this observation is not sufficient to
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establish a possible cancer link, it is somewhat concerning that among the top three genes
with significant A-to-I editing is Slingshot protein phosphatase (SSH), a cofilin phosphatase
known to promote cancer invasiveness and metastasis [198].

Another concerning issue for the COVID mRNA pro-vaccine is that the optimization
with enriched guanosine–cytosine (GC) and N1-methylpseudouridine may favor the for-
mation of tetrads of guanine called G4 (G quadruplex) that are known to destabilize DNA
and are frequently found in cancer [199,200]. G quadruplex is a preferential target of the
Polycomb Repressor Complex II, that exerts epigenetic control of gene transcription [200].
However, to elicit a possible damaging effect on the transcription and DNA repair ma-
chineries, the G-rich mRNA (fragments) of the pro-vaccine should relocate in the nucleus
of the cell. This eventuality seems very unlikely, although it cannot be excluded.

There is however another issue: following a modification in the manufacturing proce-
dure (that now makes use of DNA plasmid instead of PCR to produce Spike mRNA), trace
DNA impurities have been found in the BNT162b2 mRNA pro-vaccine [201], although the
biological significance of this finding is still unknown and deserves further investigation.

6.3. Disruption of the Immune Surveillance and Induction of Inflammation: Creating the Condition
for Awakening the Dormant Tumor

In Section 5.7, we have discussed the molecular and cellular mechanisms through
which SARS-CoV2 could interrupt tumor dormancy. With respect to SARS-CoV2 infection,
the injection with LNP-mRNA pro-vaccine brings additional stress to the tumor microen-
vironment for the following reasons: 1. Repetitive vaccination shifts the immunogenic
response toward a tolerogenic and pro-inflammatory response and overall suppression of
the immune response; 2. The lipid component of the nanoparticle is strongly inflammatory.

Due to short term of protection by the anti-COVID-19 mRNA pro-vaccine, repeat
vaccination has been recommended on average every 6 months. However, repetitive boost-
ers with Spike mRNA pro-vaccines modulate the adaptive immune system, leading to
a shift from an immune to a tolerogenic response. After three doses, a class switch of
immune-reactive IgG1 and IgG3 versus the tolerogenic IgG4 was observed in almost half
of the vaccinees [63]. A very recent study showed that in children, the serum level of
anti-Spike IgG4 continues to raise up to one year after the second dose of Comirnaty [202].
Experiments of vaccination with mRNA coding for the receptor-binding domain of the
SARS-CoV2 Spike in mice confirmed that repetitive boosters determine a condition of
humoral and cellular immune tolerance [203]. Worth noting, a literature search and meta-
analysis found that high levels of IgG4 increased the risk of developing cancer, particularly
pancreatic cancer and lymphoma [204]. Local concentration of IgG4, regardless of the anti-
gen specificity, has been shown to drive immune evasion in the tumor microenvironment
by inhibiting IgG1-mediated cancer cytotoxicity [205].

T-cell immunity plays a major role in anti-cancer response as well as in keeping dor-
mant (immunogenic dormancy) micrometastases [206]. Unfortunately, multiple vaccina-
tions with anti-COVID-19 mRNA pro-vaccines have been shown to cause T-cell exhaustion
and increased expression of PD-1 [86]. A Phase II study reported a transient lymphopenia
in some 50% of the vaccinees with one dose (30 or 100 µg) of BNT162b1, and in 33% of
those who received the highest dose (100 µg), lymphopenia was of grade 3 [207]. Further
contributing to interruption of the dormant-associated immune tumor microenvironment
is that these mRNA pro-vaccines can trigger a strong inflammatory response with elevated
levels of circulating IL-17 [208] and, particularly in cancer patients previously infected with
SARS-CoV2, a shift of memory T-cell toward pro-inflammatory IL-17+ CD8 [84]. IL-17 is
known to promote cancer cells’ proliferation in addition to impairing the T-cell mediated
anti-tumor response [209].
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Increased levels of circulating cytokines (among which IL-6 and IL-17) and growth
factors (among which VEGF and bFGF) may be detected in vaccinees up to one year
after vaccination with anti-COVID-19 mRNA Comirnaty [210]. Hypothetically, these
cytokines and growth factors could interrupt autophagy-mediated [98,174] and angiogenic-
mediated [211] tumor dormancy.

Further contributing to an inflammatory potentially tumorigenic microenvironment
is the LNP component, which is said to function as an immune stimulator adjuvant. The
cationic LNP component of the mRNA pro-vaccine was shown to induce the release of
inflammatory cytokines (mainly, IL-6, TNFα and IL-1β) by macrophages and to activate
the serum complement via the alternative pathway [212]. This could explain the so-called
“radiation recall phenomenon” shown to occur in cancer patients a few days after the
second dose of the BNT162b2 mRNA pro-vaccine [213].

Overall, continued vaccination with these COVID-19 mRNA pro-vaccines impairs
the innate and adaptive immune system and sustains an elevated inflammatory state
with IL-6 and IL-17 overproduction, along with inhibition of autophagy and stimulation
of AXL and VEGFR pathways that altogether are conducive to awakening of dormant
tumors and cancer progression. The cellular and systemic effects and possible cancer-
related consequences of mRNA anti-COVID-19 vaccination are schematically illustrated in
Figure 3.

 

3 

 
 

 
 
  

Figure 3. Anti-COVID-19 mRNA vaccinations can elicit pro-tumorigenic effects by affecting cell
and stromal homeostasis. Multiple shots, required to maintain immune protection, may eventually
lead to an inflammatory and immune-tolerant tumor microenvironment, along with stimulation of
angiogenesis, which altogether create conditions for the awakening of dormant tumors. The presence
of an intrinsic abnormal mRNA (rich in N-methyl-pseudouridine) and mRNA fragments, along with
Spike-mediated effects on membrane receptor signaling, may introduce additional risks that promote
malignancy. For details, see the text. (* indicates that Spike protein coded by the mRNA pro-vaccine
presents with modified amino acids). Arrows up indicate “induction, up-regulation, stimulation”;
arrows down indicate “depletion, down-regulation, inhibition”.
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7. Data from the Real World: Case Reports Linking Anti-COVID-19
mRNA Vaccination and Cancer

Although supported by the whelm of data in the literature, the mechanisms and
pathways illustrated above are only indicative of the carcinogenic potential of COVID-19
mRNA-based pro-vaccines. There is no specific research focusing on cancer prognosis
and fatal events in vaccinated cancer patients in relation to COVID-19, except one study
reporting the causal correlation in two out of three patients [71].

How about data from the real world? Recently, a population-based retrospective
study in a large cohort of unvaccinated (595,007) and vaccinated (2,380,028) individuals in
Seoul (South Korea), where the cumulative incidences and corresponding Hazard Ratio of
cancers were measured one year after COVID-19 vaccination, found an association between
vaccination and increased risk of thyroid, gastric, colorectal, lung, breast, and prostate
cancer [214].

In absence of an active pharmacovigilance to collect data specifically addressing the
possible correlation, if not causation, between the COVID-19 mRNA vaccination and cancer,
we rely on case reports in the literature.

Tables 1 and 2 summarize the known cases, respectively referring to the anti-COVID-19
mRNA pro-vaccines from Pfizer and Moderna (Table 1) and to other types of anti-COVID-
19 genetic vaccines (Table 2). Although when taken individually the clinical cases can be
dismissed as anecdotal facts, when considered altogether, a series of reports converging
on the same conclusion should trigger the suspicion and stimulate a discussion in the
scientific community.

Table 1. Case reports relating cancer to mRNA COVID-19 pro-vaccines.

Disease
(Onset) Clinical Features

Histological–
Biological
Features

Type of Vaccine Ref.

Angio-immunoblastic
T-lymphoma (onset 6

months after 2nd dose)

66-year-old man presented
with lymphadenopathies;

increased number, size, and
metabolic activity (of lymph
nodes 8 days after 3rd dose)

Gene mutations:
RHO, TET2,

DNMT3A, IDH2

BNT162b2
(March, April,

September 2021)
[215]

Recurrence of axillary
lymphoproliferative

disorder
(2 days after 1st dose)

79-year-old man in remission
from a primary cutaneous

anaplastic large-cell lymphoma
cured two years before;

presented with ulcerated
tumor with surrounding

erythema

CD-30-positive
lymphoproliferative
disorder; TCR gene

rearrangement
matching the

previous 2019 clone

BNT162b2 [216]

Nodal Marginal zone
B-cell lymphoma

(sudden appearance of
temporal mass the day

after 1st dose)

80-year-old woman presented
with multiple (n. 12)

lymphadenopathies at week 6
from 1st dose (week 3 from 2nd
dose); increased number (>22)
and size (2.5×) in ten weeks

Lymphoid cells
positive for CD20,
CD79a, and BCL-2;
negative for CD3,

BCL6

BNT162b2
(2 doses, 3 weeks

apart)
[217]
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Table 1. Cont.

Disease
(Onset) Clinical Features

Histological–
Biological
Features

Type of Vaccine Ref.

Diffuse large B-cell
non-Hodgkin

lymphoma (cervical
mass appearance one
week after 2nd dose)

58-year-old woman presented
with tumor mass at the angle

of the left parotid gland
progressively growing from

June to September with
multiple reactive lymph nodes,

and finally operated in
October 2021

Confirmed DLBC
NHL positive for
CD20, PAX5 and

negative for CD30,
AE1/AE3; 85% Ki-67

positivity

BNT162b2
22 May; 12 June 2021 [218]

Extranodal malignant
non-HodgkinT/NK-cell

lymphoma
(ulcerative lesions

appeared 3 days after
1st dose)

53-year-old man presented
(December 2021) with multiple

ulcerative oral lesions
appeared shortly after the 1st

dose which worsened after the
2nd dose

Tumor proliferation
with T cells positive

for CD3 and CD7,
granzyme B, CD30;
negative for CD4,
CD8, and CD20

BNT162b2
6 November; 28
November 2021

[218]

(A) Acute lymphoblastic
leukemia (two days after

1st dose of mRNA
vaccine);

(B) recurrence of
B-Acute lymphoblastic
leukemia (after 1st dose

of mRNA vaccine);
(C) recurrence of acute

myeloid leukemia (after
the booster with

BNT162b2)

(A) 49-year-old woman
presenting with petechiae and
bicytopenia, diagnosed with

B-ALL;
(B) 47-year-old woman; two
years before diagnosed with

B-cell lymphoma in remission
in the last 14 months;

(C) 67-year-old woman;
diagnosed with AML in 2007
and in remission in the last
14 years after bone marrow

transplant. She had two doses
of inactivated SARS-CoV2

vaccine in July 2021 and mRNA
BNT162b2 in September 2021

(A) B-ALL: bone
marrow showed

20–30% stained with
CD19 diffuse

positive TdT in
blastic cells;

(B) bicytopenia and
blasts;

(C) 90% blasts

BNT162b2 [219]

Four cases of acute
myeloid leukemias, one
of which extramedullary

(A) 61-year-old man; 30 days
after 3rd mRNA dose;

(B) 28-year-old woman;
2 weeks after 2nd dose;

(C) 72-year-old man; 5 weeks
after the 5th dose;

(D) 60-year-old man; 1 month
after the 4th dose

(A) 80% blastic
infiltration;

(B) bicytopenia;
blastic infiltration;
(C) pancytopenia;

70% blastic
infiltration;

(D) occipital
granulocytic sarcoma
of CD34, CD123, and

MPO positive
immature cells; 30%

myeloid blasts

BNT162b2 [220]

Diffuse large B-cell
lymphoma

(lymphadenopathy was
observed one day after

the 1st dose)

67-year-old man presented
with 6 cm subcutaneous

lymphadenopathies mass in
the left axilla 2 weeks after the

2nd BNT162b2 vaccination

Large, atypical
lymphocytes were
positive for CD20,

BCL2 and
MUM-1/IRF4;

negative for CD3;
over 80% Ki-67

positivity

BNT162b2
(2 doses) [221]
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Table 1. Cont.

Disease
(Onset) Clinical Features

Histological–
Biological
Features

Type of Vaccine Ref.

Diffuse large B-cell
lymphoma

(lymphadenopathy was
observed two days after

the 1st dose)

80-year-old woman presented
with enlarged 4.1 cm axillary
nodule that developed 1 day

after the 2nd dose; two months
later the nodule increased to
6 cm and additional lesions

appeared in the mesentery and
the left cavernous sinus

Germinal center
B-cell DLBC

lymphoma positive
for CD20, BCL6,

BCL2; negative for
CD3 and

MUM-1/IRF4; over
90% Ki-67 positivity

BNT162b2
(2 doses) [221]

Primary cutaneous
anaplastic large cell
lymphoma (10 days
after the 3rd dose)

76-year-old man presented a
fast-growing lesion at the site
of the injection 10 days after

the 3rd dose. A large
erythematous tumor of 6 cm

diameter was diagnosed
1 month later. Spontaneous

regression after 6 weeks

Anaplastic large cell
lymphoma

T1bN0M0; positive
for CD30, CD4, CD2,

CD5, MUM1, and
negative for CD20,
CD8, TIA1, ALK,

EMA, CD56, CD123
and CD68

BNT162b2
(1st and 2nd dose)

Moderna
mRNA-1273 (3rd

dose)

[222]

High-grade sarcoma

73-year-old woman; history of
angiomyolipoma in 2019;
presented with swelling
2–4 days after 2nd dose

developed in 6 cm diameter
soft mass in the right

upper arm

Grade 3, stage IIIA
undifferentiated,

pleomorphic
high-grade sarcoma

Moderna
mRNA-1273

(2 doses)
[223]

Primary cutaneous
lymphoproliferative

disorders

Series of 14 cases, of which
6 classified as relapse and 8 as
primary lesions; complete and

partial remission within the
19 months follow-up

N.A. BNT162b2 [224]

Non-Hodgkin
lymphoma (few weeks

after the 3rd dose)

66-year-old man presented
with right axillary

lymphadenopathy developed
10 days after the 3rd dose,

which grew up to 7 cm in the
following 3 months

Stage-II anaplastic
large-cell lymphoma,

ALK negative and
CD30 positive, over
90% Ki-67 positivity

BNT162b2
(January, February,

October 2021)
[225]

Conjunctival classic
Kaposi sarcoma (few
weeks after vaccine

booster)

75-year-old woman with
complex

ophthalmologic history that
includes, among others, uveitic

glaucoma OU, epiretinal
membrane OU, and cystoid
macular degeneration OS,
presented with irritated

conjunctival area

Conjunctival
epithelium shows
early squamous
metaplasia and

positive
immunostaining

with HHV8 within
the CD34 positive

vascular proliferation

BNT162b2
(three doses) [226]
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Table 1. Cont.

Disease
(Onset) Clinical Features

Histological–
Biological
Features

Type of Vaccine Ref.

Basaloid carcinoma,
wrongly cured as Bell’s

palsy for almost 8
months (symptoms

appeared 4 days after
1st dose)

56-year-old man; no previous
health problems; presented

with a massive and
aggressively infiltrating

basaloid-featured cancer in the
right side of his face that

rapidly progressed and led the
patient to death. CT scan (11

months after vaccination)
revealed the presence of

infiltrating tumor masses in the
parotid gland, likely of

cutaneous origin

D-dimer value was
1523 ng/mL

(normal range is
<500 ng/mL).

Biopsy confirmed the
diagnosis of basal

cell carcinoma

BNT162b2
(one dose) [227]

Philadelphia-positive
B-cell acute

lymphoblastic leukemia
(five days after the

booster vaccination with
bi-valent mRNA

vaccine)

43-year-old woman;
insignificant previous medical

history; presented with
splenomegaly, severe anemia
and thrombocytopenia along

with leukocytosis (1.0%
neutrophil, 9.0% lymphocyte,
0% monocyte, eosinophil and

basophil, and 90.0% blast)

Bone marrow shows
68% blastic

infiltration; cells
were positive for
CD34 and TdT,

negative for CD117
and MPO. The p190

BCR-ABL1 gene
rearrangement was

identified by RT-PCR

Five vaccinations as
follows: two doses

of Oxford/
AstraZeneca (4 June
and 31 August 2021);

half-dose of
Moderna

mRNA-1273
(15 January 2022),
NovaVax (15 July
2022), and booster

dose of the bivalent
(Omicron

BA.4/BA.5–
containing)

mRNA-1273
COVID-19 vaccine
(January 2023) plus

SARS-CoV-2
infection on 19
August 2021

[228]

Epstein–Barr
virus-positive marginal
zone lymphoma (EBV +

MZL) at autopsy
(17 days after 1st

vaccination)

71-year-old woman with
history of methotrexate-treated
rheumatoid arthritis; died due
thrombosis and multi-organ

failure 17 days after
vaccination. The autopsy

revealed systemic
lymphadenopathy comprising

atypical lymphocytes and
scattered

Hodgkin/Reed–Sternberg
(H/RS)-like cells

Atypical
lymphocytes were
positive for CD79a,

CD19, EBV-encoded
small RNA and

MUM-1 and negative
for CD3, CD5, CD10,

BCL6. H/RS-like
cells were positive

for CD3

Unspecified the type
of anti-COVID-19

vaccine
[229]
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Table 1. Cont.

Disease
(Onset) Clinical Features

Histological–
Biological
Features

Type of Vaccine Ref.

Intravascular large
B-cell lymphoma at

autopsy (105 days after
the second dose)

61-year-old woman affected by
systemic lupus erythematosus

recovered 1 month after
vaccination for joint pain,
clonic spasms, left-sided

paralysis, and fever

Diagnosis of
hemophagocytic

lymphohistiocytosis
with intra- and

perivascular
infiltration of
CD20-positive

atypical B
lymphocytes in

spleen, liver, and
lungs

Pfizer BNT162b2
mRNA vaccine

(2 doses one month
apart)

[230]

Longitudinal
melanonychia that

progressed into
subungual melanoma

53-year-old woman affected by
longitudinal melanonychia

with no known risk factors for
melanoma development

Malignant
transformation into

acral lentiginous
melanoma within 2

years from
vaccination

Pfizer BNT162b2
mRNA vaccine

(3 doses)
[231]

Breast cancer skin
metastasis that

manifested 1 month
after the 6th dose of
mRNA vaccination

85-year-old woman affected by
breast cancer that was

successfully removed by
partial mastectomy with clear

margins 2 years before

Metastatic cancer
cells in the dermis

and epidermis
showed pagetoid
atypical cells with
ample cytoplasm
features and were
positive for spike

protein, but not for
nucleocapsid protein

of SARS-CoV-2

Pfizer-BioNtech
BNT162b2 (six doses

in 2 years)
[232]

Table 2. Case reports relating cancer to anti-COVID-19 genetic vaccines other than mRNA.

Disease Clinical Features Type of Vaccine Ref.

Pheochromocytoma
63-year-old man; pheochromocytoma (very
rare benign tumor) of 7 cm developed few

days after the vaccination

Johnson and Johnson
COVID-19 vaccine [233]

Recurrence of cutaneous
T-cell lymphoma

T-cell lymphoma has been reported in two
patients, who were in remission since many

years, after the 2nd

Vaxzevria
(Oxford/AstraZeneca) [234]

EBV-positive, diffuse large
B-cell lymphoma

51-year-old man; rapidly growing diffuse
large B-cell lymphoma was reported in a

heart post-transplanted (under
immunosuppressant therapy since many
years) 7 days after receiving the 1st dose

ChAdOx1 nCoV-19 vaccine [235]

Primary cutaneous T-cell
lymphoma

28-year-old woman; primary cutaneous T-cell
lymphoma (CD31, CD71, CD81 positive)

mimicking a panniculitis has been reported in
a few days after 1st vaccination

COVID-19 Janssen vaccine [236]



Cancers 2025, 17, 3867 25 of 39

Table 2. Cont.

Disease Clinical Features Type of Vaccine Ref.

Chronic myelomonocytic
leukemia

74-year-old woman; chronic myelomonocytic
leukemia and scleroderma were diagnosed,
with first signs manifesting two days after

receiving the 1st dose, which then progressed
to acute myeloid leukemia, severe anemia,

and thrombocytopenia, and eventually died
due to COVID-19-associated

respiratory failure

Johnson and Johnson
COVID-19 vaccine [237]

Classic Kaposi sarcoma
manifested 7 days after the

3rd dose of ChAdOx1
vaccine

73-year-old man with a skin nodule of
2 × 3 × 1 cm HIV negative, positive for

CD34 and HHV-8
ChAdOx1 nCoV-19 vaccine [238]

8. Discussion and Concluding Remarks
Anti-COVID-19 vaccination has helped, at least in the early phase of their deployment,

to manage COVID-19 by reducing the hospitalizations of the vaccinee and thus relieving
the workload of health care workers [239,240], although their real efficacy in protecting
from deaths in hospitalized patients has been recently questioned [241,242]. However, the
immune protection provided by these mRNA pro-vaccines was found to last for a few
months, necessitating additional shots to maintain anti-Spike IgG levels. Vaccines are gener-
ally considered safe with respect to potential carcinogenicity, and therefore, their approval
normally does not require experimental proof of non-mutagenicity unless the injectable
product contains a component never tested in humans and for which it is reasonable to
suspect potential mutagenic activity. In the case of the anti-COVID-19 mRNA pro-vaccines,
it was deemed that the mRNA coding for the Spike protein and the LNP would not have
such mutagenic activity. I am of the same opinion, and personally, I believe that these
“vaccines” may not have such activity.

Cancer develops after several decades from exposure to mutagenic substances, yet
cancerogenesis might be anticipated in individuals with familial predispositions be-
cause of inherited mutations in tumor suppressor genes or DNA repair system genes
(see Sections 2.1 and 5). Thus, even if conducted in animals, the period of observation
(generally 6–24 months) would not be sufficient to show the potential carcinogenicity of
the vaccines in “healthy” animals (with no cancer predisposing genetic defects) maintained
in cages under standard conditions with no extra inflammatory hits.

Still, a series of clinical case reports points to a temporal correlation between vacci-
nation with genetically based anti-COVID-19 vaccines and newly diagnosed cancer and
cancer progression.

Cancer eventually emerges clinically after a variety of endogenous, exogenous, and
circumstantial events have altered the structure and composition of the parenchyma and
the stroma. Besides genetic mutations, epigenetic dysregulation, inflammation (and angio-
genesis), immune suppression, dysregulation of autophagy, impairment of DNA damage
repair, activation of signaling for proliferation and migration, inhibition of signaling for cell
death, increased energetic metabolism, all these events contribute to cancer development
and progression, and to the awakening of dormant tumors leading to cancer relapse. A thor-
ough review of the current literature shows that the SARS-CoV2 infection and (multiple)
LNP-mRNA vaccinations could elicit a cancer-promoting effect through several mecha-
nisms, including disruption of the immunosurveillance and induction of inflammation
in the tumor microenvironment, disruption of autophagy control, disruption of tumor
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suppressor pathways, and activation of kinase receptors involved in cell proliferation, cell
migration, and EMT. A major player in these events is the Spike proteins, which can lead to
down-regulation of protective ACE2 and concomitant activation of the AXL pathway.

These events could combine and be redundantly activated in patients who have been
vaccinated and have contracted the infection several times, and in a relatively short time.
This unfortunate situation (cocktail effect) would determine a synergism of the damages and
alterations caused by the virus and the mRNA pro-vaccine, which can lead to “catastrophic”
effects: awakening of dormant tumors (minimal residual disease; micrometastases), and fast
progression of cancer (Figure 4). This scenario would be more probable in oncologic patients
and in individuals with undiagnosed cancer, and even more in individuals susceptible
to cancer because of predisposing genetic defects. An alerting, albeit ignored, signal was
reported in a multicenter study where cancer progression and death were reported in some
vaccinated patients [71]. As for non-cancer patients, an emblematic case is that of a 43-year-
old woman with no significant clinical history who was diagnosed with Ph-positive ALL a
few days after vaccination with the double mRNA-1273 vaccine administered in addition
to four previous vaccinations with different anti-COVID-19 vaccines plus SARS-CoV2
infections [228].

 

4 

 
 

 
Figure 4. Can SARS-CoV2 infection and repeated mRNA anti-COVID-19 vaccinations be carcino-
genic? The SARS-CoV2 virus enters via the aerodigestive tract and exploits the Spike protein to
infect only (mainly) the ACE2-positive cells in the lung, intestine, endothelium, and other distant
organs including the heart, liver, and kidney. In the infected cell, the virus can be degraded by the
autophagy–endocytic–lysosomal pathway or can reproduce and exit to infect neighboring cells. The
anti-COVID-19 vaccine is made of liponanoparticles (LNP) containing the modified mRNA coding
for the Spike protein, and possibly also fragments of the modified mRNA. The vaccine is injected
into the deltoid muscle fibers which will expose on the membrane the S protein to alert the immune
system. The S protein and its fragments can be released and be endocytosed by antigen processing
cells (macrophages and dendritic cells) to trigger the production by activated B cells. However, the
LNP may transfect the vaccine mRNA to any cell. In addition, the vaccine mRNA and the Spike
can travel to distant organs within the exosomes. Both SARS-CoV2 and LNP-mRNA anti-COVID-19
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vaccine affect cell homeostatic processes and induce immune dysfunction and tissue environment
inflammation, all conditions that could potentially lead to the awakening of a dormant tumor or
micrometastasis and promote cancer proliferation and invasiveness. In detail, the Spike protein
(either viral- or vaccine-derived) can 1. lead to depletion of ACE2, which results in abundance of
angiotensinogen 2 having mitogenic and angiogenic properties (while the Ang1-7 produced by ACE2
would have pro-apoptotic and anti-angiogenic properties); 2. cause cell–cell fusion, which results in
polyploidy and abnormal chromosomal arrangements; 3. promote the AKT and ERK proliferation
pathways and the SNAIL migratory pathway. In addition, the SARS-CoV2 viral infection might
interfere with oncosuppressor pathways, disrupt the control of autophagy, induce the glycolytic shift,
and trigger the IL-6-driven cytokine storm. On the other hand, repeated cycles of vaccination with
the modified mRNA causes immune dysfunction, leading to IgG4-mediated tolerance and disruption
of immune surveillance while the LNP causes inflammation. Inflammation (and angiogenesis) and
immune suppression created a tissue microenvironment permissive for awakening dormant tumors
and micrometastases, thus promoting cancer cell growth and invasiveness. (* indicates that the
vaccine mRNA is modified. LNP, liponanoparticle).

It is to be noted that the clinical cases discussed here do not establish a causal relation-
ship between the vaccine and the cancer. Such an assessment would require an “ad hoc”
investigation [15].

In the practical impossibility to demonstrate a causal link, the biological plausibility
of the link between the SARS-CoV2 virus and the anti-COVID-19 mRNA pro-vaccine
with cancer must suggest caution in using these types of vaccines and meanwhile adopt
appropriate measures to protect the patient at risk (particularly cancer patients) from the
infection, while waiting for vaccine developers to take into account what is expressed
here to design safer and more effective vaccines. The present observations call for extra
caution when using this type of vaccines, taking into consideration the potential risk of
triggering the awakening of dormant cancers or of facilitating the development of cancer
in individuals with a genetic predisposition to cancer. First and foremost, it is imperative
to elucidate the mechanisms underlying the complex interplay between the virus and
vaccination, on the one hand, and oncogenic pathways and the immune system, on the
other. This knowledge would also help better stratify patients who truly need vaccination
and could inform how to prevent and treat unwanted side effects. In other words, it is
advisable to perform a personalized assessment of the real need to vaccinate patients at risk,
guided by the principles of vaccinomics and adversomics [52,243]. In the meantime, the
adoption of other strategies to protect cancer patients, for instance, by using monoclonal
antibodies [244] and convalescent hyperimmune plasma [245], is advised.
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