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Sintesi

Trail 2021 e il 2024, ampie fasce della popolazione, compresi i malati di cancro, hanno contratto piu
volte la COVID-19 e hanno ricevuto dosi ripetute di vaccini a mRNA. Il concomitante aumento dei tumori
di nuova diagnosi o la rapida progressione dei tumori in trattamento hanno sollevato preoccupazioni
sul possibile ruolo del SARS-CoV-2 o dei vaccini in questi esiti. Sebbene appaia estremamente
improbabile che il SARS-CoV-2 e i vaccini a mRNA anti-COVID-19 possano provocare eventi
genotossici che causano neocarcinogenesi in breve tempo, essi potrebbero comunque causare
effetti pro-cancerogeni non genotossici. Infatti, molteplici meccanismi molecolari, cellulari e
sistemici, tra cui l'interruzione dell'immunosorveglianza e l'induzione dell'infiammazione nel
microambiente tumorale, l'interruzione dell'autofagia e delle vie di soppressione tumorale e
I'attivazione della segnalazione coinvolta nella proliferazione e nella migrazione cellulare,
potrebbero portare sinergicamente al risveglio e alla rapida crescita di microtumori dormienti, in
particolare in individui vulnerabili esposti sia a infezioni ripetute che a vaccinazioni in un breve
lasso di tempo.

Riassunto

Per contrastare la pandemia di COVID-19 causata dal coronavirus SARS-CoV-2, sono stati resi disponibili
in tempi relativamente brevi due vaccini anti-COVID-19 a base di mRNA (di Pfizer-BioNTech e Moderna),
distribuiti in tutto il mondo sulla base di un'approvazione di emergenza. Considerati vulnerabili e a
rischio di infezione, i pazienti oncologici sono stati inseriti tra i soggetti prioritari per la vaccinazione
contro la COVID-19 e sono stati vaccinati piu volte a causa della breve durata della protezione offerta da
questi vaccini. Recentemente, in molti paesi & stato osservato un aumento dell'incidenza e una rapida
progressione dei tumori, che potrebbe (almeno in parte) rappresentare tumori non diagnosticati o non
trattati durante la pandemia. E stato anche suggerito che lo stesso SARS-CoV-2 o persino i vaccini anti-
COVID-19 a mRNA potrebbero aver contribuito alla recidiva e al peggioramento dell'esito clinico nei
pazienti oncologici, data l'alta incidenza di COVID-19 nei pazienti ospedalizzati e il fatto che questi
pazienti sono stati vaccinati con priorita piu volte e in un breve periodo di tempo. Sebbene appaia
estremamente improbabile che il SARS-CoV-2 e i vaccini anti-COVID-19 a mRNA provochino eventi
genotossici e causino neocarcinogenesi in breve tempo, essi potrebbero comunque causare effetti pro-
cancerogeni non genotossici innescando una reazione infiammatoria esagerata, compromettendo
I'omeostasi immunitaria, stimolando la proliferazione cellulare e influenzando negativamente la
risposta allo stress cellulare e il meccanismo di riparazione dei danni. Cio potrebbe portare alla ricrescita
di micrometastasi dormienti o alla recidiva di malattie residue minime stabili. Un esito cosl dannoso
potrebbe derivare da una sinergia tra il virus e il vaccino, specialmente in individui multivaccinati e
multi-infetti. In questo articolo presento il punto di vista del patologo cellulare e discuto i molteplici
meccanismi possibili attraverso i quali il virus e il vaccino anti-COVID-19 a mRNA potrebbero favorire
la tumorigenesi. Sebbene in questa fase non sia possibile stabilire un nesso causale, la conoscenza dei
potenziali rischi cancerogeni potrebbe aiutare i medici e i responsabili delle politiche sanitarie ad
adottare le misure migliori per proteggere i pazienti vulnerabili e convincere gli sviluppatori di

Cancers 2025, 17,3867

https://doi.org/10.3390/cancers17233867


mailto:ciro.isidoro@med.uniupo.it
https://doi.org/10.3390/cancers17233867
https://doi.org/10.3390/cancers17233867
https://doi.org/10.3390/cancers17233867
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers17233867
https://www.mdpi.com/journal/cancers
https://orcid.org/0000-0002-5494-3034
https://www.mdpi.com/article/10.3390/cancers17233867?type=check_update&version=1
https://www.mdpi.com/
https://www.mdpi.com/
https://www.mdpi.com/

Cancers 2025, 17, 3867

2di35

vaccini a progettare un vaccino privo di tali rischi.

Parole chiave: COVID-19; vaccino a mRNA; nanoparticelle lipidiche; autofagia; dormienza
tumorale; epigenetica; microambiente tumorale; citochine; soppressori tumorali

1. Introduzione

Nel marzo 2020, 1'0OMS ha dichiarato ufficialmente la COVID-19, l'infezione causata dal
coronavirus SARS-CoV2, una pandemia globale. A quel tempo, a causa dell'elevato numero di
pazienti infetti che necessitavano di assistenza, molti ospedali hanno scelto di dare priorita a questi
pazienti, convertendo i reparti specialistici in reparti dedicati alla COVID, e questo ha
inevitabilmente posticipato le cure specialistiche per altre patologie, compreso il cancro [1,2]. Di
conseguenza, la diagnosi e l'assistenza medica nelle fasi iniziali della malattia sono state negate a
una vasta popolazione [3].

Alcuni mesi dopo (cioe nel dicembre 2020 e nel gennaio 2021), la somministrazione dei vaccini
anti-COVID-19 a base di mRNA (BNT162b2/Comirnaty di Pfizer-BioNTech e mRNA-1273/Spikevax di
Moderna), prodotti con una tecnologia innovativa e approvati per l'uso di emergenza, & stata data
prioritariamente agli anziani (oltre i 60 anni) e ai pazienti "vulnerabili" (cosiddetti "fragili") con malattie
croniche quali disturbi neurodegenerativi, malattie autoimmuni e cancro, in particolare [4,5]. Poco
dopo, la vaccinazione & stata resa obbligatoria per gli operatori sanitari e successivamente per la
popolazione generale che lavora in contesti pubblici. Ad agosto 2023, 1'84,8% della popolazione adulta
dell'Unione  Europea era stata vaccinata almeno wuna volta contro il virus
(https://commission.europa.eu/strategy-and-policy/coronavirus-response/safe-  covid-19-vaccines-
europeans_en; consultato il 31 agosto 2025). Ad aprile 2023, negli Stati Uniti sono state somministrate
quasi 400 milioni di dosi di vaccino Pfizer-BioNTech e 250 milioni di dosi di vaccino Moderna
(https://www statista.com/statistics /1198516 /covid-19-vaccinations-administered-us-by-company/;
consultato il 31 agosto 2025). Da allora, il tasso di vaccinazione e diminuito costantemente in tutti i paesi
occidentali.

Durante la pandemia, quasi 775.615.736 casi confermati e oltre 7.051.323 decessi sono stati
attribuiti alla COVID-19 dall'Organizzazione Mondiale della Sanita (OMS) (https://covid19.who.int/ ;
consultato il 28 giugno 2024). Secondo un recente studio, nel periodo compreso tra dicembre 2020 e
marzo 2023, i vaccini anti-COVID-19 avrebbero salvato fino a 1,6 milioni di vite tra le persone di eta
superiore ai 25 anni nei paesi europei [6].

La pandemia di COVID-19 é stata ufficialmente dichiarata conclusa il 5 maggio 2023 [7], ma I'OMS
sollecita i governi sulla necessita di continuare la campagna di vaccinazione anti-COVID-19 come misura
preventiva per ridurre il carico ospedaliero. Ancora una volta, i pazienti oncologici sono costretti a
vaccinarsi contro la COVID-19 secondo le raccomandazioni delle societa scientifiche di oncologi (ASCO,
American Society of Clinical Oncology negli Stati Uniti, ESMO, European Society of Medical Oncology in
Europa e altre simili). Comirnaty (Pfizer-BioNTech) e Spikevax (Moderna) rimangono i vaccini anti-
COVID-19 piu utilizzati.

Attualmente, il peggio del virus sembra essere passato. Al contrario, il cancro € in aumento in
tutto il mondo [8], con quasi 20 milioni di nuovi casi e 9,7 milioni di decessi correlati al cancro nel
2022, e si prevede un ulteriore aumento fino a 35 milioni di nuovi casi nel 2050
(https://www.uicc.org/news/globocan-2022-latest-global-cancer-data-shows-rising- incidence-and-
stark-inequities; consultato il 30 dicembre 2024). Negli Stati Uniti, il tasso di mortalita per cancro &
diminuito del 33% dal 1991 al 2021 [9]. Nel 2025, si stima che saranno diagnosticati due milioni di
nuovi casi di cancro e che circa 618.000 persone moriranno di cancro negli Stati Uniti (statistiche da
https://www.cancer.gov/about-cancer/understanding/; consultato il 31 agosto 2025). Un recente
studio basato su un modello matematico di calcolo dell'incidenza del cancro e dei tassi di mortalita
prevede che in Australia il numero di nuove diagnosi aumentera del 51% e la mortalita aumentera del
36% tra il 2020 e il 2044 [10].

Ancora piu preoccupante € la recente proiezione che mostra un aumento dell'incidenza del cancro
in eta piu giovane (<50 anni) per la generazione nata tra il 1965 e il 1980 rispetto alla generazione nata
prima del 1964 [11].
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Lo stile di vita & considerato il principale responsabile di tale tendenza, anche se non vanno
trascurati altri fattori, tra cui le infezioni e i farmaci che hanno un impatto negativo sul sistema
immunitario e sull'omeostasi metabolica.

I casi clinici che descrivono l'insorgenza improvvisa di tumori a rapida progressione diagnosticati

in stadio avanzato in pazienti altrimenti sani o la recidiva e la rapida progressione di tumori in pazienti
affetti da cancro dopo la vaccinazione anti-COVID-19 sono in aumento nella letteratura sottoposta a
revisione paritaria, senza considerare gli articoli ritrattati (vedi Tabelle 1 e 2). Le correlazioni
sequenziali e temporali, che non implicano di per sé una correlazione causale tra la campagna di
vaccinazione e tale aumento dell'incidenza di tumori, hanno sollevato preoccupazioni circa il possibile
nesso causale. Tuttavia, stabilire un nesso causale ¢é difficile perché i registri nazionali dei tumori non
considerano i tumori di nuova diagnosi o recidivi come potenzialmente collegati allo stato vaccinale.
D'altra parte, negli ultimi tre anni non €& stata perseguita una farmacovigilanza attiva prospettica che
metta a confronto individui vaccinati e non vaccinati, sani o affetti da cancro, cosa che in ogni caso
sarebbe impraticabile perché sia la popolazione di individui sani di eta superiore ai 60 anni (quelli pi
suscettibili di sviluppare il cancro) sia quella dei pazienti oncologici sono state in gran parte vaccinate.
A complicare ulteriormente la situazione, questi pazienti potrebbero anche essere stati infettati dal
SARS-CoV2 prima e/o dopo la vaccinazione. Ora che sono passati cinque anni dalla diffusione del virus
in tutto il mondo e che il vaccino € stato somministrato a una vasta popolazione per tre anni, possiamo
fare il punto della situazione e cercare di rispondere alle domande fondamentali: (i) E plausibile che il
virus COVID-19 e i vaccini anti-COVID-19 a mRNA possano causare il cancro? E, se si,
(ii) quanto hanno contribuito e quanto contribuiranno in futuro all'aumento dei casi di cancro?
Nell'affrontare queste domande, dobbiamo considerare che il cancro tende intrinsecamente a
peggiorare (nonostante il trattamento) e che questi pazienti sono stati vaccinati tre o piu volte e,
molto probabilmente, hanno anche contratto la COVID-19 [12-14]. Pertanto, & oggettivamente
difficile determinare e valutare il fattore o i fattori che causano il peggioramento clinico nei pazienti
oncologici. Allo stesso modo, nel caso di individui (apparentemente) sani che manifestano
I'insorgenza improvvisa di un tumore dopo la vaccinazione, dobbiamo considerare possibili precedenti
infezioni da SARS-CoV2 o altri fattori predisponenti che potrebbero aver favorito la carcinogenesi. In
quest'ultimo caso, il virus e il vaccino potrebbero comunque aver avuto un ruolo scatenante
aggiuntivo. Ma una cosa va chiarita da subito: il concetto di "turbocancro” che si sviluppa in poco
piu di due anni non ha alcun fondamento scientifico, nemmeno nel caso di sostanze chimiche
cancerogene iniettate direttamente nel circolo sanguigno.

In questa sede non mi addentrero nella valutazione della causalita, che sarebbe complessa e
impegnativa [15], ma presentero0 e discutero i potenziali meccanismi e percorsi attraverso i quali il
virus SARS-CoV2 e i vaccini genetici anti-COVID-19 potrebbero contribuire alla carcinogenesi o al
peggioramento di tumori preesistenti. Queste conoscenze sono utili per informare i responsabili
politici e i medici nella scelta del miglior intervento di salute pubblica per proteggere i cittadini e i
pazienti che in futuro dovranno affrontare pandemie virali simili. L'obiettivo non & quello di
attribuire la responsabilita del cancro al virus o ai vaccini anti-COVID-19, ma piuttosto di instillare
dubbi e stimolare una riflessione libera da pregiudizi, dogmi e conflitti di interesse sulla sicurezza
di questi vaccini a mRNA e sulle migliori precauzioni da attuare per proteggere i pazienti a rischio di
infezioni virali.

2. Il virus, il cancro e il vaccino a mRNA: il brutto, il cattivo e il buono?

Parodiando il film cult "Il buono, il brutto e il cattivo", possiamo affermare con certezza che il

"brutto” e il virus e il "cattivo" ¢ il cancro, ma siamo sicuri che il vaccino sia il "buono"?

2.1. 11 Cancro

\

Cominciamo dal "cattivo". Il cancro non & una malattia ben definita, ma piuttosto una malattia
complessa e multiforme che evolve continuamente e cambia dinamicamente le sue caratteristiche
in risposta a segnali ambientali locali e sistemici [16,17].

Al momento della diagnosi di cancro, ci troviamo di fronte a una massa costituita da molti
cloni maligni di cellule che si comportano in modo diverso (in termini di proliferazione,
metabolismo, sopravvivenza, migrazione e altre caratteristiche) e che molto probabilmente si sono
gia diffuse in altre parti del corpo formando metastasi, alcune delle quali potrebbero non essere
rilevabili dalla diagnostica per immagini [18].
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Durante questo processo, altre cellule dello stesso tessuto possono subire una trasformazione in
cellule tumorali e avviare lo stesso processo di evoluzione clonale e diffusione. Pertanto, quando il
paziente alla fine si rivolge a un medico a causa dei sintomi, & probabile che il corpo presenti molti
tumori diversi a vari stadi di progressione in uno o piu organi. Secondo la "teoria della mutazione
somatica", la trasformazione in una cellula cancerosa ¢ il risultato dell'accumulo di mutazioni nel
funzionamento di diversi geni (appartenenti alle famiglie degli oncogeni, dei geni oncosoppressori
e dei geni di riparazione del DNA) che controllano la proliferazione cellulare, la differenziazione
cellulare, la morte cellulare, la migrazione cellulare, il metabolismo cellulare e i sistemi di
riparazione dei danni al DNA e alle proteine/organelli [18]. Il funzionamento mutato di questi geni
e il risultato di cambiamenti genetici nelle loro sequenze di codifica del DNA o di cambiamenti
epigenetici nella loro espressione [19,20]. Le mutazioni genetiche ed epigenetiche non riparate in cosi
tanti geni si accumulano nel corso di molti anni, e questo spiega perché i tumori spontanei (sporadici) si
sviluppano in decenni e sono infatti diagnosticati piu frequentemente nei settantenni [9]. Tuttavia,
cio puo essere anticipato in caso di esposizione cronica a fattori mutageni/epimutageni ambientali (i
cosiddetti "agenti cancerogeni genotossici e non genotossici") e/o di malfunzionamento (in alcuni
casi geneticamente ereditario) dei meccanismi che tengono sotto controllo i danni cellulari e il
comportamento anomalo delle cellule [21,22]. Tuttavia, in alcuni tumori, € stato dimostrato che
alterazioni genomiche massive si verificano come un singolo evento catastrofico in un breve lasso
di tempo [23].

Tuttavia, la presenza di oncogeni mutati e geni oncosoppressori non € sufficiente per lo sviluppo
del cancro, poiché il microambiente circostante puo creare una barriera che contrasta la
proliferazione e la diffusione di tali cellule trasformate [24,25]. Ancora piu intrigante € il fatto che sono
stati descritti anche tumori senza alterazioni genetiche, il che mette in discussione la "teoria della
mutazione somatica” [26].

2.2. Il virus

Cosa possiamo dire del "brutto"? Il SARS-CoV2 e stato cosi chiamato per la sua elevata
somiglianza con il SARS-CoV, il coronavirus che ha causato la sindrome da distress respiratorio
descritta da Carlo Urbani nel 2003 molto simile alla COVID-19 [27]. La COVID-19 puo presentarsi
con sintomi simil-influenzali da lievi a gravi, anche se in alcuni pazienti, in particolare gli anziani e
quelli con comorbidita (come malattie cardiovascolari, diabete, obesita), la malattia pud progredire
rapidamente e portare alla morte a seguito di distress respiratorio e insufficienza multiorgano
derivante da un'iperattivazione della risposta infiammatoria associata a iperproduzione di
citochine e tromboembolismi multipli [28,29]. Il virione sferico (circa 100 nm di diametro) &
costituito da un involucro formato da una membrana lipidica a doppio strato in cui sono inserite le
proteine strutturali E (Envelope), M (Membrane) e S (Spike, altamente glicosilata, proteina che si
assembla in trimeri) e contenente un filamento di RNA a singolo filamento positivo da 29,9 kb
complessato con la proteina Nucleocapside (N) [30]. Il virus sfrutta la proteina Spike (S) per infettare le
cellule legandosi alla proteina enzima di conversione dell'angiotensina 2 (ACE2) espressa sulla
membrana delle cellule endoteliali ed epiteliali di vari organi, in particolare polmoni, intestino e reni
[30,31].

La proteina Spike del SARS-CoV2 presenta la sequenza polibasica unica (681PRRAR685) per la
scissione mediata dalla furina in due subunita S1 (aa 1-685, che contiene il dominio di legame ACE2) e
S2 (aa 686-1273, che media la fusione dell'involucro del virione con la membrana cellulare dell'ospite),
e siritiene che questa caratteristica peculiare aumenti l'infettivita cellulare e la trasmissibilita del virus
[25]. L'ingresso del virus é facilitato anche dalla scissione proteolitica della proteina S (nel sito della
furina) da parte della serina proteasi TMPRSS2 presente sulla superficie della cellula ricevente, che
promuove la fusione del virione con la cellula mediata dalla subunita S2.

Anche l'endocitosi e le cisteino-proteasi endosomiali catepsine B e L possono contribuire
all'ingresso del virus e al successivo rilascio dell'RNA virale nel citoplasma. Una volta entrato nella
cellula, I'RNA virale viene liberato nel citoplasma e copiato per intero, per essere incluso nei nuovi
virioni, e sotto forma di frammenti di RNA subgenomico per dirigere la sintesi delle proteine
strutturali e accessorie. L'intero genoma codifica per le quattro proteine strutturali (E, M, S e N), due
poliproteine (ORF1a e ORF1b) e sei proteine accessorie (di funzione sconosciuta) [30,31].

Le poliproteine ORFla e ORF1b sono proteolizzate, rispettivamente, dalla proteasi simile alla
papaina (PLpro = nsp3) e dalla proteasi simile alla 3-chimotripsina (3CLpro, nota anche come proteasi
maggiore Mpro = nsp5) per generare 16 proteine non strutturali (NSP 1-11 e NSP 12-16,
rispettivamente) necessarie per la replicazione e I'assemblaggio virale [30,31].
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La replicazione virale richiede la formazione di vescicole a doppia membrana derivate dal
reticolo endoplasmatico che presentano somiglianze con gli autofagosomi, e i virioni assemblati
lasciano poi la cellula per esocitosi passando attraverso il complesso di Golgi o la via lisosomiale
secretoria [32,33]. La via autofagica-lisosomiale svolge un duplice ruolo nell'infezione e nella
replicazione virale: da un lato, puo portare alla degradazione lisosomiale dell'intero virione, ma
dall'altro pud essere manipolata dal virus per fungere da piattaforma di membrana (le vescicole a
doppia membrana) per la sua replicazione e assemblaggio [33,34]. Il SARS-CoV2 puo infatti essere
indirizzato alla degradazione lisosomiale una volta entrato tramite endocitosi o una volta nel
citoplasma, ma alcune proteine virali (in particolare NSP6) possono compromettere la fusione
autofagosoma-lisosoma e la degradazione lisosomiale delle particelle virali, con conseguente accumulo
di autofagosomi [33,35]. L'autofagia svolge anche un ruolo nelle risposte immunitarie innate e adattive
(presentazione dell'antigene MHC-dipendente) [36]. Pertanto, l'interruzione dell'autofagia da parte
del SARS-CoV2 nelle cellule che presentano l'antigene pud compromettere la risposta immunitaria
antivirale. Poiché 1'autofagia si oppone alla biogenesi dell'inflammosoma nelle cellule immunitarie
ed epiteliali, l'interruzione dell'autofagia da parte del SARS-CoV2 puo portare alla piroptosi
dipendente dall'inflammosoma nelle cellule delle vie aeree infettate [37], e alla tempesta di
citochine e alle tromboembolie [38,39]. La questione qui € se i pazienti oncologici siano piu soggetti
a essere infettati dal SARS-CoV2 e, in tal caso, quale potrebbe essere la spiegazione biologica. E un
dato di fatto che la COVID-19 viene diagnosticata con elevata frequenza (e spesso con esito fatale) nei
pazienti oncologici, e le spiegazioni pit semplici sono il ricovero ospedaliero (dove la probabilita di
entrare in contatto con il virus e elevata) e 'immunodepressione derivante dal cancro stesso e dalle
terapie [40]. Tuttavia, e stato sostenuto che, paradossalmente, I'immunodepressione potrebbe
proteggere i pazienti oncologici infetti da SARS-CoV2 dal rischio fatale di ipercitochinemia [41]. Per
quanto riguarda i fattori che possono favorire l'infettivita nei pazienti oncologici, i piu evidenti da
considerare sono I'ACE2 di superficie cellulare (il recettore SARS-CoV2) e il TMPRSS2 (1'enzima che
elabora la proteina Spike per facilitare l'ingresso cellulare del SARS-CoV2). Livelli elevati di ACE2 e
di TMPRSS2 sono stati riscontrati, rispettivamente, nei carcinomi renali, colorettali e gastrici e nei
carcinomi della prostata, colorettali ed esofagogastrici [42].

E stato ipotizzato che i pazienti affetti da tali tumori siano piu inclini a contrarre l'infezione e a
manifestare la forma grave di COVID-19. Nelle cellule del cancro alla prostata, e stato dimostrato che
TMPRSS2 attiva il “recettore 2 attivato dalla proteasi”, innescando vie di segnalazione a valle associate
a inflammazione, metastasi e invasione (vedi sotto). E interessante notare che la terapia di deprivazione
androgenica riduce l'espressione di TMPRSS2 e diminuisce il rischio di infezione da SARS-CoV2 nei
pazienti affetti da cancro alla prostata [43]. Oltre all'ACE2, altre proteine di membrana possono agire
come recettori Spike (o co-recettori) per il SARS-CoV2, tra cui citiamo solo AXL [44], Neuropilin-1 [45]
e CD147 [46], che sono altamente espresse sulle cellule tumorali e potrebbero spiegare la maggiore
suscettibilita dei pazienti oncologici alle infezioni [47-49].

Esiste anche la possibilita che la suscettibilita all'infezione da SARS-CoV2 e allo sviluppo del
cancro condivida alcuni fattori genetici ed epigenetici. Studi genomici ed epigenomici hanno delineato
i determinanti genetici dell'ospite della suscettibilita alla COVID-19 e dell'esito clinico [50-53]. In
uno studio che ha correlato l'espressione genica e proteica di 17 geni di suscettibilita alla COVID-19
con la prognosi del cancro ai polmoni, & stato scoperto che l'iperepressione di FYCO1, CXCR6, XCR1 e
TAC4 nelle cellule tumorali era protettiva, mentre quella di TMEM65 e OAS1 era un fattore di
rischio per l'infezione da SARS-CoV2 [54]. Un altro studio ha scoperto che la predisposizione
genetica al cancro del colon-retto o al cancro del polmone era causalmente associata
rispettivamente a una diminuzione o a un aumento della suscettibilita alla gravita della COVID-19, e
questa associazione coinvolgeva i geni LZTFL1, CCR9, FYCO1, CXCR6, XCR1 e ABO [55]. In
particolare, le mutazioni genetiche che alterano la struttura terziaria della proteina FYCO1 erano
associate ad un aumento della replicazione virale e alla diffusione attraverso una maggiore
esocitosi, il che potrebbe spiegare la gravita della COVID-19 [56].

2.3. Il vaccino

Infine, nel 2021, e entrato in scena quello che ¢ stato salutato come il "buono”, ovvero il vaccino. I due
vaccini anti-COVID-19 a mRNA piu utilizzati, prodotti da Pfizer-BioNTech e Moderna, sono stati
approvati in circostanze di emergenza dalle agenzie di regolamentazione dei farmaci (FDA negli Stati
Uniti ed EMA nell'Unione Europea) per la prevenzione della malattia COVID-19 in individui di eta pari o
superiore a 16 anni.
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L'approvazione si € basata su una sperimentazione di 3 mesi che ha dimostrato un'efficacia
(relativa) superiore al 94% nella prevenzione dell'infezione e della gravita degli esiti e ha mostrato solo
reazioni da lievi a moderate nei 2 mesi successivi alla seconda dose [57,58]. Va sottolineato che i pazienti
oncologici non sono stati inclusi in questi studi clinici.

Entrambi questi vaccini sono costituiti da nanoparticelle lipidiche (LNP) contenenti 'mRNA
codificante per la proteina Spike. In questo senso, non agiscono come i tradizionali vaccini a base
proteica, in quanto la proteina immunogenica € sintetizzata dall'ospite, il che rende questo prodotto
piu simile a un "profarmaco genetico immunomodulatore" (per semplicita, d'ora in poi lo chiamero
"pro-vaccino mRNA"). E stato anche notato che questi "pro-vaccini mRNA" non contrastano
l'infezione da SARS-CoV2, ma inducono invece la sintesi di IgG neutralizzanti che possono limitare
la riproduzione e la diffusione del virus negli organi, attenuando cosi i sintomi clinici della malattia
[59], e per questo sono meglio conosciuti come vaccini anti-COVID-19. Cio & dovuto anche
all'incapacita dell'iniezione intramuscolare di questo pro-vaccino mRNA di innescare la produzione
di IgA mucosali anti-Spike anche dopo tre dosi [60].

Una risposta immuno-infiammatoria esagerata, ma transitoria, a livello dei linfonodi ascellari,
occasionalmente associata ad alterazioni del parenchima ipsilaterale, a seguito della vaccinazione
anti-COVID-19 mRNA, é un riscontro abbastanza frequente e potrebbe far sospettare una neoplasia
maligna [61,62].

Ancora piu preoccupante & il fatto che le vaccinazioni multiple con questi prodotti modificano la

risposta immunitaria in una risposta tollerante in cui viene prodotta prevalentemente la sottoclasse
inerte IgG4 [63], in particolare nei pazienti che vengono infettati dopo la vaccinazione [64].
La domanda che sorge spontanea é: "Quanto si & rivelato utile e sicuro per i pazienti oncologici vaccinarsi
contro la COVID-19 con questi vaccini a mRNA?". 1 pazienti oncologici sono generalmente
immunodepressi, come effetto collaterale sia dei trattamenti (molti chemioterapici sono
mielosoppressivi) sia della malattia stessa, e questo li rende piu vulnerabili alle infezioni, mentre il
ricovero ospedaliero aumenta il rischio di esposizione a batteri e virus. Non sorprende che i pazienti con
tumori solidi o ematologici, e in particolare quelli con metastasi, si siano dimostrati piu suscettibili a
contrarre la forma grave di COVID-19 [65,66]. I vaccini anti-influenzali (di tipo tradizionale) vengono
somministrati regolarmente ai pazienti affetti da tumori ematologici e solidi, partendo dal presupposto
che l'immunizzazione proteggerebbe questi pazienti vulnerabili da esiti gravi senza effetti
collaterali. Sulla base di queste considerazioni e dei risultati degli studi clinici che sostengono
un'efficacia relativa (non assoluta) del 95% [57,58], la vaccinazione anti-COVID e stata considerata
prioritaria per i pazienti oncologici [65,67], trascurando il fatto che tali studi clinici non includevano
questa tipologia di pazienti [57,58].

Diversi studi hanno dimostrato che la vaccinazione antinfluenzale non riesce a fornire la
protezione prevista nei pazienti con tumori solidi o neoplasie ematologiche [68,69]. E stato inoltre
sottolineato che i pazienti oncologici non dovrebbero essere vaccinati durante la radioterapia o la
chemioterapia a causa della risposta immunitaria inefficace [70]. Il comunicato stampa dell'ESMO
del 20 settembre 2021 ha sottolineato i dati riportati al Congresso ESMO 2021 che dimostrano la
sicurezza e l'efficacia protettiva di due o, meglio, tre dosi di vaccino nei pazienti oncologici
(https://ecancer.org/en/news/20966-esmo-2021-evidence-suggests-that-covid- vaccines-do-protect-
patients-with-cancer; consultato il 27 giugno 2024).

Uno studio multicentrico condotto su una coorte di 84 pazienti oncologici non vaccinati e 49
vaccinati (la maggior parte con vaccino a base di mRNA; un terzo con tre dosi) risultati positivi al
SARS-CoV2 ha riportato che nel secondo gruppo la COVID-19 era piu lieve e il vaccino proteggeva
meglio dalla morte correlata alla COVID-19 [71].

Questi rapporti si basavano su un periodo di osservazione relativamente breve e su poche
coorti. Pochi mesi dopo (nel giugno 2022), la prima analisi dei dati reali ha mostrato che nei pazienti
oncologici vaccinati con vaccini anti-COVID-19 a mRNA possono verificarsi infezioni dirompenti,
anche con esiti gravi (il tasso era inferiore per il vaccino Moderna rispetto al vaccino Pfizer) [72].
Rispetto ai controlli sani, i pazienti oncologici che hanno ricevuto tre dosi del vaccino a mRNA
Comirnaty (Pfizer-BioNTech) hanno mostrato una risposta immunitaria cellulo-mediata inferiore
e titoli anticorpali anti-Spike piu bassi, indicando la necessita di ulteriori richiami per fornire
protezione [73,74].

Altri studi hanno confermato che i pazienti oncologici vaccinati possono contrarre l'infezione
da SARS-CoV2 e che quelli in trattamento, in particolare i pazienti ematologici sottoposti a terapia
anti-CD20, presentano un rischio maggiore di sviluppare una forma grave di COVID-19
[12,14,75,76].


https://ecancer.org/en/news/20966-esmo-2021-evidence-suggests-that-covid-vaccines-do-protect-patients-with-cancer
https://ecancer.org/en/news/20966-esmo-2021-evidence-suggests-that-covid-vaccines-do-protect-patients-with-cancer
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[ pazienti affetti da tumori solidi in trattamento hanno mostrato una sieroconversione subottimale in
risposta al vaccino anti-COVID-19 a mRNA [77] e possono sviluppare gravi effetti avversi di natura
immunitaria [78]. Rispetto ai pazienti sani abbinati, la risposta immunitaria umorale al vaccino pro-
mRNA BNT162b2 (Pfizer-BioNTech Comirnaty) era notevolmente inferiore nei pazienti affetti da
leucemia linfocitica cronica B in trattamento con inibitori della tirosin-chinasi di Bruton o venetoclax +
anti-CD20 [79].

I corticosteroidi sono somministrati di routine ai pazienti oncologici come co-medicazione e, data
la loro attivita immunosoppressiva, ci si pud aspettare una bassa efficacia della vaccinazione in questi
pazienti [80]. Allo stesso modo, poiché il blocco del PD-1 compromette la risposta CD8 alla stimolazione
antigenica [81], e probabile che le terapie con inibitori del checkpoint immunitario nei pazienti con
tumori solidi abroghino la risposta specifica delle cellule T alla vaccinazione contro la COVID-19. Mentre
e stato riportato che la chemioterapia interferisce con la sieroconversione, l'immunoterapia sembra non
compromettere la risposta umorale alla vaccinazione anti-COVID-19 a mRNA nei pazienti oncologici;
tuttavia, in questi pazienti e stata segnalata la produzione di autoanticorpi, sollevando preoccupazioni
circa il rischio di sviluppare malattie autoimmuni [82]. Sono stati segnalati effetti avversi correlati
all'autoimmunita dopo la terza dose di pro-vaccino mRNA COVID-19 (Comirnaty) in pazienti oncologici
sottoposti a trattamento con inibitori dei checkpoint immunitari [83]. Queste osservazioni avvertono
che l'introduzione di immunostimolanti a base di mRNA insieme a terapie immunosoppressive in un
contesto di disregolazione del sistema immunitario (come nei pazienti oncologici) puo avere
conseguenze imprevedibili. La vaccinazione anti-COVID-19 a mRNA ha esacerbato la risposta
immunitaria pro-infiammatoria Th17 insieme alla neutrofilia nei pazienti oncologici, in particolare in
quelli guariti dalla COVID-19 [84]. Poiché questa condizione comporta il rischio di scatenare una
tempesta di citochine, & necessaria cautela nella vaccinazione dei pazienti oncologici con precedente
infezione da SARS-CoV2, e cio € particolarmente preoccupante quando vengono somministrati piu
richiami. Una recente rassegna della letteratura ha concluso che la vaccinazione contro la COVID-19 &
stata generalmente ben tollerata, sicura ed efficace nei pazienti oncologici, con rari effetti collaterali
gravi tra cui miopatia necrotizzante, tromboembolismi e reazioni allergiche [85]. Tuttavia, lo stesso
studio ha anche rivelato che la protezione era moderata e limitata nel tempo, poiché nonostante la
vaccinazione i pazienti oncologici potevano contrarre l'infezione, con ricovero ospedaliero e alto rischio
di mortalita, richiedendo dosi di richiamo continue come misura preventiva [85].

Infatti, la risposta dei linfociti T (che & la pit importante per combattere le infezioni virali) nei
pazienti oncologici era debole anche dopo la terza dose [73]. A questo proposito, sono state sollevate
preoccupazioni circa la possibilita che piu richiami possano indurre 1'esaurimento delle cellule T CD8+
insieme ad un aumento dell'espressione di PD1 [86]. In linea con quanto sopra, i pazienti con leucemia
linfocitica cronica hanno mostrato una inefficiente risposta delle cellule T CD4+ e CD8+ memoria alla
proteina Spike virale otto mesi dopo due dosi del vaccino a mRNA Comirnaty (BNT162b2) [87]. Nel
complesso, questi studi mettono in discussione l'ipotesi che la vaccinazione contro la COVID-19 sia
benefica in termini di protezione dall'infezione da COVID-19 e dagli esiti clinici, e sollevano invece
importanti preoccupazioni sulla sua sicurezza per i pazienti oncologici, soprattutto perché la protezione
a breve termine impone una vaccinazione di richiamo continua.

3.La complessa interazione tra COVID-19, vaccino anti-COVID-19 a
mRNA e cancro

Non possiamo chiudere questa prima sezione introduttiva senza menzionare alcuni casi clinici che
suggeriscono un effetto paradossale dell'infezione da SARS-CoV2 e della vaccinazione anti-COVID-
19, in combinazione o da sole, associato a una regressione parziale e transitoria del cancro. In una
piccola coorte di pazienti oncologici sottoposti a immunoterapia con checkpoint, quattro settimane
dopo la terza dose del vaccino Comirnaty si € osservato un aumento del numero assoluto di cellule
NK circolanti, non di cellule T e B, e questi pazienti hanno mostrato una ridotta probabilita di
progressione della malattia entro sei mesi dalla vaccinazione [88]. Da notare che si tratta della stessa
coorte in cui un quinto dei soggetti con elevata risposta anticorpale alla vaccinazione ha sviluppato
tiroidite autoimmune [83].

Uno studio recente dimostra che alcuni pazienti affetti da forme aggressive di cancro della
pelle e dei polmoni che hanno ricevuto vaccini a mRNA contro la COVID-19 entro cento giorni dalla
terapia con checkpoint immunitari hanno registrato un aumento della risposta dell'interferone di tipo I
che ha potenziato la risposta delle cellule T e portato a un miglioramento della sopravvivenza di
alcuni mesi [89].
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Nella loro rassegna, Meo et al. descrivono i casi clinici di nove pazienti con neoplasie ematologiche
(tra cui linfomi, leucemie e mielomi) e cinque pazienti con tumori solidi (due tumori renali e tre tumori
colorettali) in cui & stata osservata una remissione spontanea temporanea (la piu lunga e durata fino a
12 mesi) a seguito dell'infezione da SARS-CoV2 [90]. Le spiegazioni fornite dagli autori per questo effetto
includono un possibile effetto oncolitico diretto del virus nei linfociti maligni infetti e la stimolazione
delle cellule T citotossiche da parte delle citochine pro-infiammatorie all'interno del microambiente del
tumore solido, sebbene non siano stati condotti studi meccanicistici per confermare tali attivita
biologiche e immunologiche. In letteratura sono riportati anche tre casi di regressione parziale del
cancro in seguito alla vaccinazione anti-COVID-19. In un caso, un paziente con diagnosi di carcinoma
mioepiteliale della parotide sinistra e possibili noduli metastatici nel polmone ha ricevuto due dosi
del vaccino Moderna mRNA-1273 COVID-19, a cui ha avuto una grave reazione avversa che si
risolta entro due settimane, e nei 9 mesi successivi ha mostrato una riduzione del 73% della massa
tumorale associata a un cambiamento fenotipico nel microambiente immunitario del tumore da un
fenotipo pro-tumorigenico (caratterizzato da macrofagi M2) a un fenotipo pro-infiammatorio
antitumorale arricchito di cellule T CD8+ [91]. In un paziente affetto da linfoma cutaneo anaplastico
a grandi cellule primario (pcALCL) che presentava recidiva e noduli polmonari multipli (sospetti di
metastasi) dopo la terapia, & stata osservata una marcata regressione delle lesioni dei linfonodi
cervicali e dei polmoni una settimana dopo la somministrazione di una dose di vaccino Comirnaty,
suggerendo una possibile correlazione causale [92]. Gli autori, tuttavia, menzionano correttamente
che il pcALCL spesso va incontro a regressione spontanea. Un terzo caso riguarda un paziente con
diagnosi di carcinoma cutaneo a cellule di Merkel (MCC) in cui si € osservata la regressione di un
linfonodo ascellare metastatico ingrossato dopo la terza dose di vaccino Comirnaty [93]. Come notato
dagli autori, nonostante sia altamente aggressivo, la regressione spontanea del MCC é
relativamente frequente.

Gli ultimi due casi possono essere spiegati con la propensione intrinseca alla regressione
spontanea delle piccole lesioni metastatiche, possibilmente favorita dalla stimolazione immunitaria
indotta dal vaccino. Infine, c'é il caso di un paziente che ha avuto una recidiva di epatocarcinoma
quattro mesi dopo una epatectomia parziale e sei mesi dopo ha mostrato una regressione della
lesione epatica dopo tre dosi di Moderna mRNA-1273 e infezione da SARS-CoV2 [94]. Quest'ultimo
caso evidenzia la complessa interazione tra la risposta immunitaria dell'ospite nei pazienti oncologici,
la COVID-19 e la vaccinazione anti-COVID-19 a mRNA. Questi pochi casi clinici rimangono aneddotici
e presentano importanti limitazioni per stabilire una correlazione causale o una generalizzazione,
soprattutto se si considera la mancanza di una chiara spiegazione meccanicistica, l'insufficiente
riproducibilita e il numero maggiore di casi in cui tale effetto non & stato segnalato o, al contrario, &
stato segnalato un effetto opposto, come discusso nei paragrafi seguenti.

4.11 SARS-CoV2 e/o il vaccino anti-COVID-19 a mRNA possono
causare il cancro? Mettiamo insieme i pezzi del puzzle

In questa seconda parte, affronteremo la questione se e in che modo il SARS-CoV2 e il vaccino
anti-COVID-19 mRNA possano causare il cancro o peggiorare la prognosi di tumori preesistenti.

Abbiamo appreso che il cancro e una malattia proliferativa e invasiva in continua evoluzione,
derivante dall'accumulo di alterazioni genetiche ed epigenetiche nelle cellule parenchimalj, la cui
crescita e diffusione sono facilitate da fattori microambientali. I noduli pre-neoplastici, le
micrometastasi e la malattia residua (dopo la chirurgia citoriduttiva e la terapia antitumorale)
possono rimanere stabili per decenni in uno stato dormiente a causa di un insufficiente apporto
sanguigno (dormienza angiogenica), di un'efficiente soppressione immunitaria (dormienza
immuno-mediata) e di un'autofagia sovraregolata (dormienza delle cellule tumorali mediata
dall'autofagia) [95-97].

L'inflammazione dei tessuti é la causa principale dell'interruzione della dormienza e della
crescita del cancro, poiché promuove la neoangiogenesi e la soppressione immunitaria, inibendo al
contempo l'autofagia cellulare [95,98-100]. Il ruolo dei fattori di crescita e degli ormoni, della
neoangiogenesi, dell'infiammazione e delle cellule immunosoppressive nel microambiente nella
crescita delle metastasi e stato delineato da Stephen Paget (1889) nella sua teoria del "seme e del
terreno” [101].
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Un'altra caratteristica importante delle cellule tumorali e 1'alterazione del metabolismo del
glucosio e degli aminoacidi, per cui il glucosio viene preferenzialmente glicolizzato con la produzione di
acido lattico, mentre i mitocondri utilizzano preferenzialmente la glutammina per il ciclo di Krebs
[102].

Pertanto, per indurre o promuovere la carcinogenesi, il virus e il vaccino a mRNA devono
possedere una o piu delle seguenti capacita: 1. indurre mutagenesi genica; 2. indurre cambiamenti
epigenetici; 3. interferire con i percorsi oncogenici e soppressori dei tumori che controllano il
comportamento e il destino delle cellule, influenzando la proliferazione e la migrazione cellulare,
'autofagia, la sopravvivenza e la morte cellulare e il metabolismo energetico; 4. indurre infiammazione,
angiogenesi e linfopenia nel microambiente tissutale.

Sebbene la possibilita che il codice genetico virale o 'mRNA pro-vaccinale trascritto inversamente
possano integrarsi nel genoma cellulare e causare mutagenesi genica sia ritenuta estremamente
improbabile, tutti gli altri eventi sono stati effettivamente associati all'infezione da SARS-CoV2 e alla
vaccinazione anti-COVID-19. Questi concetti sono illustrati schematicamente nella Figura 1.
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Figura 1. Il SARS-CoV2 e il pro-vaccino mRNA anti-COVID-19 possono innescare diversi percorsi pro-
cancerogeni, compromettendo al contempo i processi antitumorali. Il virus e il vaccino pro-mRNA
condividono alcuni di questi effetti innescati dalla proteina Spike (sebbene la Spike vaccinale sia
modificata), mentre altri effetti sono specifici del virus (innescati dalle proteine virali) o del vaccino pro-
mRNA (I'LNP), come descritto in dettaglio nelle sezioni seguenti.

Sebbene alcuni eventi siano associati in modo univoco alla peculiare struttura fisico-chimica
del virus o del vaccino anti-COVID-19 a mRNA, vedremo che entrambi condividono le caratteristiche
per innescare gli stessi eventi. In particolare, la proteina Spike virale e quella prodotta dall'mRNA del
vaccino, essendo strutturalmente molto simili, probabilmente innescheranno le stesse reazioni. Un
altro importante meccanismo che favorisce il cancro, comune all'infezione da SARS-CoV2 e ai
vaccini anti-COVID mRNA, é l'inflammazione.

5.I1 virus SARS-CoV?2 e il cancro

Recenti studi hanno evidenziato la possibilita che l'infezione da SARS-CoV2 possa creare le
condizioni per la progressione del cancro [103,104]. Un sospettato speciale e ovvio & I'IL-6, dato il
suo ruolo nell'inflammazione associata alla COVID-19 [105]. Tuttavia, come vedremo in dettaglio,
molti altri fattori e percorsi possono collegare l'infezione da SARS-CoV2 al cancro, con la proteina Spike
come principale fattore scatenante.



Cancers 2025, 17, 3867

10di 35

5.1. Potenziale oncogenico dei recettori ACE2 e AXL del SARS-CoV?2

Nei pazienti infetti da SARS-CoV2, cosi come nei soggetti vaccinati con mRNA anti-COVID-19, i livelli
di ACE2 legati alla membrana e circolanti risultano diminuiti a causa dell'attacco della proteina
Spike, e questo é stato collegato a inflammazione, trombosi e ipertensione [106-108]. La deplezione
di ACE2 potrebbe avere un ruolo nella carcinogenesi? L'ACE2 e una peptidasi che si trova legata
alla membrana sulla superficie delle cellule endoteliali ed epiteliali e in forma solubile nella
circolazione. Ha un ruolo fondamentale nel sistema renina-angiotensina, che controlla il
funzionamento cardiovascolare. In breve, il fegato secerne nel sangue l'angiotensinogeno che viene
trasformato in angiotensina I (Angl) dalla renina (secreta dai reni), e I'Angl viene ulteriormente
trasformata dall'enzima ACE (enzima di conversione dell'angiotensina; espresso in particolare, ma
non esclusivamente, nelle cellule epiteliali dei polmoni) nell'angiotensina II (Angll), un
vasocostrittore che puo essere infine trasformato dall'ACE2 nel peptide vasodilatatore Angl-7.
Pertanto, mentre 1'Angll favorisce l'ipertensione, 1'Angl-7 contrasta l'ipertensione, attenua
I'infiammazione e previene le tromboembolie [108]. Inoltre, 'Angll ha attivita mitogeniche e
angiogeniche e inibisce 1'apoptosi delle cellule tumorali, mentre I'Ang1-7 inibisce I'angiogenesi e la
crescita del cancro [109,110]. Coerentemente, e stato riportato che I'ACE2 inibisce l'angiogenesi e
previene la metastasi in modelli di cancro al seno e al polmone [111-113]. E stato dimostrato che la
carenza di ACE2 aumenta il rischio di carcinogenesi epatica e la resistenza all'immunoterapia anti-
PD-L1, promuovendo al contempo un microambiente tumorale permissivo associato a macrofagi di
tipo M2, angiogenesi e cellule mieloidi immunosoppressive [114].

Il SARS-CoV2 favorisce la transizione epiteliale-mesenchimale (EMT) delle cellule tumorali
polmonari infette, associata ad un'elevata espressione di ZEB1 e AXL e ad una diminuzione
dell'espressione dell'ACE2 di membrana [115].

Nelle cellule epiteliai mammarie benigne che esprimono transgenicamente ACE2,
I'esposizione alla proteina Spike SARS-CoV2 ha indotto la trascrizione di SNAIL e l'acquisizione di
un fenotipo mesenchimale migratorio e invasivo [116]. Inoltre, & stato dimostrato che la proteina
Spike iperglicosilata della variante gamma SARS-CoV2 induce I'EMT mediata da SNAIL e promuove
la metastasi in vivo delle cellule di carcinoma mammario umano xenotrapiantate [117].

Pertanto, la deplezione di ACE2 comporta la perdita di una barriera antitumorale contro la crescita
e la diffusione di (micro)tumori preesistenti, favorendo la metastasi [118-120]. In questo contesto,
va notato che ACE2 puo essere legato da MDM2 (mouse-double-minute 2) e successivamente
ubiquitinato e degradato tramite proteasoma [121]. Da notare che MDM2 e considerata una
proteina oncogena poiché pud determinare la degradazione mediata dal proteasoma di TP53, una
delle principali proteine soppressori tumorali (vedi Sezione 5.3). E possibile ipotizzare che
I'esaurimento dell'’ACE2 indotto da Spike possa lasciare MDM2 libera di legarsi e determinare la
degradazione di TP53, aumentando cosi ulteriormente la malignita (maggiori informazioni nella
Sezione 5.3).

Un altro recettore per SARS-CoV2 che potenzialmente collega la COVID-19 al cancro & AXL
(Anexelekto). Si tratta di una proteina recettoriale transmembrana (il suo ligando fisiologico &€ GAS6)
che svolge un ruolo importante nella progressione del cancro, poiché la sua attivazione promuove la
proliferazione cellulare, 'EMT e la metastatizzazione [122]. Vale la pena notare che ACE2 e AXL sono
coinvolti in altri percorsi cancerogeni, come verra spiegato in dettaglio di seguito.

5.2. La proteina Spike del SARS-CoV2 pud attivare vie di segnalazione oncogeniche

Le cellule di carcinoma polmonare umano A549 (pneumociti di tipo II) incubate con particelle simili al
SARS-CoV(1) o con la sua proteina Spike isolata hanno mostrato la fosforilazione mediata dalla
caseina chinasi Il dell'ACE2 e 'attivazione della via Ras-ERK (chinasi regolata extracellulare)-AP1
[123]. Piu recentemente, e stato dimostrato che la subunita S1 della proteina Spike SARS-CoV2
innesca la segnalazione ERK nelle cellule endoteliali polmonari e che questo effetto non € mediato
dall'interazione con I'ACE2 [124].

Nel carcinoma polmonare A549 e nelle cellule di epatocarcinoma Huh-7.5, la proteina Spike
SARS-CoV2 attiva la via MAPK-NF-xB e l'induzione a valle della sintesi di IL-6 [125]. Nelle cellule
epiteliali polmonari, é stato dimostrato che SARS-CoV?2 attiva la via di segnalazione di sopravvivenza
del recettore del fattore di crescita epidermico (EGFR)-AKT insieme alla stimolazione della
produzione mitocondriale di ATP [126].
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Si ritiene che questo meccanismo aiuti il virus a sostenere la sua replicazione mantenendo in
vita e potenziando il metabolismo energetico delle cellule infette nella fase iniziale dell'infezione. Le
vie (Ras-)ERK/MAPK e AKT regolano la trascrizione, la sintesi proteica, la proliferazione cellulare
e la sopravvivenza cellulare e sono iperattivate nelle cellule tumorali [127,128]. Inoltre, e stato
dimostrato che le proteine Spike interagiscono con il recettore degli estrogeni e inducono la
proliferazione cellulare ERa-dipendente delle cellule del cancro alla mammella [129]. Infine, uno studio
in silico ha scoperto che la proteina Spike virale potenzialmente interagisce con e attiva le vie EGFR
e VEGFR [130]. Non e stato ancora studiato se la segnalazione sopra descritta innescata dalla proteina
Spike virale possa causare la sopravvivenza aberrante e la stimolazione della proliferazione e della
migrazione delle cellule preneoplastiche infette, ma non puo essere escluso.

5.3. La proteina Spike del SARS-CoV?2 puo inattivare le vie di segnalazione dei soppressori tumorali

TP53 e BRCA1/2 sono due importanti proteine oncosoppressori che svolgono un ruolo
fondamentale nella progressione del cancro e nella resistenza alla terapia [131,132]. TP53 (p53)
ha funzioni nucleari e citosoliche: nel nucleo, come omotetramero, si lega al DNA per dirigere la
trascrizione dei geni che regolano il ciclo cellulare, la riparazione del DNA, I'apoptosi, I'autofagia e
il metabolismo cellulare; nel citoplasma, come monomero, dirige 1'oligomerizzazione di BAX sulla
membrana mitocondriale esterna e sulla membrana lisosomiale per indurre la morte cellulare [133].
Alcuni mutanti p53 incapaci di legarsi al DNA possono agire come "dominanti negativi" e
compromettere l'apoptosi e I'autofagia [134].

In precedenza, e stata riscontrata una complessa interazione tra p53 e SARS-CoV: é stato
dimostrato che p53 e in grado di inibire la replicazione virale e, d'altra parte, il virus puo promuovere
I'ubiquitinazione e la degradazione di p53 [135]. Data la somiglianza tra i domini coinvolti in SARS-CoV
e SARS-CoV2, é ragionevole ipotizzare che anche quest'ultimo abbia una relazione simile con p53.

In questo contesto, uno studio in silico ha scoperto che il dominio C-terminale della regione heptic
repeat-2 della subunita S2 (che svolge un ruolo nella fusione della membrana) ha il potenziale di legarsi
alle proteine p53, BRCA-1 e BRCA-2 [136]. Se questa interazione fosse confermata, si aprirebbe uno
scenario pericoloso. Infatti, il possibile sequestro di queste proteine da parte della proteina Spike S2
avrebbe conseguenze catastrofiche nella cellula a causa della perdita del controllo dell'integrita del
genoma e del comportamento cellulare.

Molto recentemente, Zhang ed El-Deiry [137] hanno saggiato questa ipotesi in varie linee cellulari
tumorali in cui la proteina SARS-CoV2 era espressa transgenicamente. La co-immunoprecipitazione non
ha confermato l'interazione tra S2 e p53, probabilmente perché le due proteine risiedono in
compartimenti diversi (rispettivamente citosol e nucleo). Tuttavia, questi autori hanno scoperto che
I'espressione esogena della proteina Spike attenuava l'attivita trascrizionale di p53, e cio non era dovuto
alla degradazione di p53 mediata da MDM2 [137]. E importante notare che, quando le cellule tumorali
sono state trattate con il farmaco chemioterapico cisplatino, che danneggia il DNA, le cellule che
esprimevano Spike non sono state in grado di trascrivere p21 per bloccare il ciclo cellulare e indurre la
morte cellulare.

Quando la via AKT viene attivata dai recettori dei fattori di crescita, p53 viene degradato dal
proteasoma tramite MDM?2 e cio e piu probabile quando ACE2, un substrato alternativo di MDM2,
& meno abbondante nella cellula. E stato dimostrato che SARS-CoV2 attiva la via EGFR-AKT e riduce
I'ACE2 (vedere le sezioni 5.3 e 5.4), una combinazione che potrebbe favorire la degradazione di
p53.

5.4. La proteina Spike induce la fusione cellula-cellula: un passo verso la trasformazione cancerosa?

La fusione cellula-cellula € un fenomeno ben noto caratteristico del cancro che porta alla formazione di
cellule ibride con comportamento misto dovuto al contributo combinato non solo dei nuclei ma
anche degli organelli citoplasmatici, tra cui mitocondri e lisosomi possono svolgere un ruolo
importante [138].

Nel microambiente tumorale, le cellule tumorali possono aumentare il loro potenziale maligno
fondendosi con cellule staminali mesenchimali, fibroblasti e macrofagi [139]. Inoltre, la formazione
di tali sincizi all'interno del microambiente tumorale potrebbe favorire 1'evasione immunitaria delle
cellule tumorali in seguito all'intrappolamento delle cellule T e NK (formando "strutture cell-in-
cell"), portando cosi alla linfopenia [140].
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La fusione cellulare & relativamente rara nei tumori spontanei, ma questo evento potrebbe
essere favorito dall'infezione da SARS-CoV2. La presenza del sito polibasico sensibile alla furina
aumenta la proprieta fusogena della subunita S2 della proteina Spike, che puo portare alla
formazione di sincizi [140]. Cio accade quando una cellula infettata da SARS-CoV2 espone sulla
membrana la proteina Spike che interagisce con le proteine ACE2-TMPRSS2 o ACE2-AXL-NRP1
espresse su una cellula vicina [141,142]. Si ritiene che questo processo aumenti l'infettivita cellula-
cellula.

E interessante notare che l'idrossiclorochina, un inibitore dell'acidificazione endosomiale-
lisosomiale e della formazione di autolisosomi, e risultata in grado di inibire questo processo [140], il
che avvalora l'uso di questo farmaco per la profilassi della COVID-19 [143].

Dato che ACE2 e AXL sono altamente espressi nelle cellule epiteliali tumorali e nelle cellule
stromali/mesenchimali, la capacita della proteina Spike di promuovere la fusione delle cellule
vicine che esprimono queste proteine solleva preoccupazioni circa la possibile formazione di cellule
tumorali ibride con un maggiore potenziale metastatico [144,145].

5.5. La replicazione del SARS-CoV2 disregola I'autofagia: un passo verso la carcinogenesi?

L'autofagia € un processo di degradazione lisosomiale che elimina le strutture subcellulari
danneggiate e ridondanti e mantiene l'omeostasi dei tessuti, tenendo sotto controllo la
proliferazione e la migrazione cellulare [146]. L'autofagia ha lo scopo di intrappolare all'interno
dell'autofagosoma (una vescicola a doppia membrana che origina dal reticolo endoplasmatico)
qualsiasi agglomerato proteico citosolico e organello che perturba l'omeostasi cellulare e di
dirigerne la degradazione mediante fusione con i lisosomi, organelli acidi dotati di un'ampia gamma
di enzimi idrolitici [146]. La perturbazione della via dell'autofagica ha effetti negativi sull'omeostasi
cellulare e potrebbe favorire il fenotipo maligno [147]. In particolare, la disregolazione dell'autofagia
nelle cellule tumorali pud invece favorire la sopravvivenza contro le terapie antitumorali [148].
Come vedremo, la disregolazione dell'autofagia si verifica nelle cellule infettate da SARS-CoV?2.

L'autofagia e coinvolta nell'infezione da coronavirus, nella replicazione e nella diffusione
virale. Il SARS-CoV2, come molti altri virus, puo sfruttare questo processo vescicolare per la propria
replicazione e fuoriuscita dalla cellula [149,150]. In particolare, le proteine non strutturali NSP15 e
NSP6 possono dirottare la via dell'autofagia in modo che la prima induca la formazione di
autofagosomi mentre la seconda alteri l'acidificazione dei lisosomi compromettendone la fusione
con gli autofagosomi [149]. In questo modo, il virus sfuggira alla degradazione lisosomiale e
dirottera invece gli autofagosomi nascenti verso la formazione di vescicole a doppia membrana per
il suo assemblaggio [35,149]. Un altro studio ha scoperto che I'ORF10 del SARS-CoV2 si localizza nei
mitocondri dove si lega alla proteina di segnalazione antivirale mitocondriale e ne dirige la
degradazione tramite mitofagia [151]. Nell'infezione da SARS-CoV2, l'autofagia svolge un ruolo
importante nella protezione delle cellule dalla morte [152], ad esempio proteggendo le cellule
immunitarie infette dalla piroptosi attraverso la degradazione dell'inflammosoma [37,38]. Infine,
da ricordare che FYCO1 (FYVE and coiled-coil domain autophagy adaptor 1), uno dei geni di
suscettibilita all'infezione da SARS-CoV2 [56], codifica un adattatore RAB7 coinvolto nella
formazione degli autolisosomi ed e considerato un nuovo oncogene in quanto promuove 'EMT e la
migrazione nelle cellule tumorali della mammella e della cervice uterina [153,154].

5.6. 1l SARS-CoV2 altera la respirazione mitocondriale e induce stress ossidativo

La correlazione tra il metabolismo del glucosio e l'infezione da SARS-CoV2 & emersa con
I'osservazione che la glicemia incontrollata era un fattore di rischio per la COVID-19 [155]. Una
caratteristica importante delle cellule tumorali € l'alterazione del metabolismo del glucosio nota come
effetto Warburg, per cui le cellule tumorali assorbono avidamente il glucosio che viene completamente
glicolizzato nel citosol (per fornire substrati per la sintesi dei nucleosidi) invece di essere
completamente ossidato attraverso la respirazione mitocondriale [156]. Questa divergenza nel
metabolismo del glucosio & diretta dal fattore di trascrizione oncogenico HIF-1a (Hypoxia-Inducible
Factor 1a), che oltre ai geni della via glicolitica, trascrive anche, tra gli altri, geni coinvolti
nell'angiogenesi (VEGF, fattore di crescita endoteliale vascolare) e nella motilita cellulare (HGF, fattore
di crescita degli epatociti), nell'infiammazione e nel rimodellamento del microambiente tumorale [157].
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E stato riportato che SARS-CoV2 induce una diversione del metabolismo in senso glicolitico nei
macrofagi polmonari infetti [158]. Dal punto di vista meccanicistico, 'ORF3a del SARS-CoV2 induce
la produzione di ROS mitocondriali che stabilizzano I'HIF-1q, che a sua volta promuove la glicolisi
[159]. Una simile diversione in senso glicolitico potrebbe verificarsi anche nelle cellule epiteliali
infettate dal SARS-CoV2, e questo sarebbe un ulteriore fattore nel caso delle cellule preneoplastiche.

A chiudere il cerchio, I'IL-6, che guida la tempesta di citochine nella COVID-19, induce il
metabolismo glicolitico nelle cellule tumorali e promuove la fenoconversione dei fibroblasti
stromali in fibroblasti permissivi associati al cancro attraverso l'inibizione dell'autofagia
[160,161].

Nelle cellule tumorali, esiste un'interazione tra il metabolismo alterato del glucosio e la respirazione
mitocondriale [102]. [ mitocondri disfunzionali producono radicali ossidativi (ROS) che possono attivare
I'inflammosoma con la produzione e la secrezione di citochine inflammatorie. Il ruolo dei ROS nello
sviluppo e nella progressione del cancro dipende dalla quantita prodotta: livelli da bassi a moderati
innescano la proliferazione e la migrazione cellulare, mentre livelli elevati di ROS danneggiano le proteine,
le membrane e il DNA e inducono la morte cellulare [162]. In particolare, i ROS possono indurre o inibire
l'autofagia (e in particolare la mitofagia) con conseguenze opposte nella tumorigenesi e nella metastasi
[163].

E stato dimostrato che l'infezione da SARS-CoV2 influisce sulla respirazione mitocondriale. La
compromissione della morfologia e del funzionamento mitocondriale con sovrapproduzione di ROS nei
leucociti periferici e nei muscoli & un riscontro comune nei pazienti affetti da COVID-19 [164]. Pertanto,
l'infezione da SARS-CoV2 di cellule tumorali pre-maligne o dormienti potrebbe provocare tali effetti,
innescando la crescita e I'invasione del tumore.

5.7. Il SARS-CoV2 scatena una tempesta di citochine infiammatorie e induce la deplezione delle

cellule immunitarie, creando un microambiente favorevole alle recidive e alle metastasi

I monociti e i macrofagi infettati dal SARS-CoV2 isolati dai polmoni dei pazienti affetti da COVID-
19 producono enormi quantita di citochine pro-infiammatorie come IL-18, TNF-«, IL-6 e IFN-, B e A,
che precedono la cosiddetta tempesta di citochine e allo stesso tempo attenuano la risposta immunitaria
delle cellule T [158]. Questa produzione di citochine & diretta dall'HIF-1o in risposta ai ROS
mitocondriale e puo, infatti, essere prevenuta da antiossidanti come 1'N-acetilcisteina [158]. Da notare
che la secrezione di citochine dai monociti infettati da SARS-CoV2, e in particolare dell'IL-1, inibisce
la proliferazione dei linfociti T CD4+ e CD8+ e aumenta l'espressione superficiale del PD-1 nei linfociti
CD4, a indicare l'esaurimento delle cellule immunitarie [158]. Questi risultati sono coerenti con
I'associazione segnalata tra la tempesta di citochine (in particolare IFN-y e TNF-&) e la linfopenia
[165,166]. Nei pazienti infetti, l'iperproduzione di citochine proinfiammatorie (in particolare IL-6,
TNF-ot e IFN-Y) puo seguire I'accumulo di angiotensina II non degradata e l'iperattivazione del suo
recettore di tipo 1 (AT1R) a causa della diminuzione di ACE2 indotta da Spike [167].

Le citochine proinfiammatorie reclutano cellule soppressive di origine mieloide che creano un
microambiente permissivo per la crescita tumorale e lo sviluppo di metastasi, inibendo la risposta
immunitaria antitumorale delle cellule T [168].

Un'ulteriore preoccupazione e che la risposta infiammatoria e la disregolazione del sistema
immunitario associate al SARS-CoV2 potrebbero creare le condizioni per il risveglio delle cellule
tumorali dormienti [169,170]. E interessante notare che AXL, il recettore per Spike SARS-CoV2
altamente espresso nelle cellule tumorali, si &€ dimostrato essenziale per la dormienza indotta dal TGF-
32 delle cellule tumorali metastatiche [171]. A complicare ulteriormente le cose, 'asse GAS6-AXL induce
I'autofagia nei macrofagi, inibendo l'attivazione dell'inflammosoma e il rilascio di IL-1f e IL-18,
mitigando cosi l'inflammazione [172]. L'IL-6, principale responsabile della tempesta citochinica [173], &
una citochina pro-tumorigenica in quanto promuove la proliferazione e la migrazione delle cellule
tumorali, interrompe la dormienza delle cellule tumorali e peggiora la prognosi dei pazienti oncologici
attraverso l'inibizione dell'autofagia [98,174].
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Non & noto se questi scenari possano verificarsi nel contesto tumorale dei pazienti infetti dal
virus, un aspetto che merita di essere approfondito. L'osservazione che il rischio di mortalita correlata
al cancro e di metastasi polmonari & piu elevato nei pazienti infetti da SARS-CoV-2 e la
dimostrazione che I'IL-6 associata all'infezione da SARS-CoV2 pud risvegliare cellule di carcinoma
mammario dormienti metastatizzate nel polmone dei topi supportano questa possibilita [175]. Gli
effetti cellulari e sistemici e le possibili conseguenze correlate al cancro dell'infezione da SARS-CoV2
sono illustrati schematicamente nella Figura 2.

Virus Effect Outcome Possible consequences
fAn n Cell proliferation,
4 ACE2 4 An g1 oy angiogenesis, inhibition of
9 apoptosis
f SNAIL1 EMT Invasion and metastasis
TRAS'ERK Protein synthesis
4 MAPK-NFKB Pt su”rvival Tumor growth
4 EGFR-AKT
‘ BRéA??gRCAZ Genome instability Gene mutations
sars-covz  HGe Ry Hypri clls il
Spike protein
Nsp
# Autophagy Cell mass growth Cell proliferation and Migration
fGcholysis ? ROS Protein-Organelle-DNA
J, Mitochondrial respiration damages
fIL—ﬁ. IL-18 Inflammation Tumor permissive
TTNFu, IFNy atio microenvironment

Figura 2. L'infezione da SARS-CoV2 puo provocare effetti pro-tumorigenici influenzando I'omeostasi
cellulare e stromale. Nella cellula, la proteina spike e altre proteine virali possono causare la
deplezione dell'’ACE2, innescare vie di sopravvivenza e proliferazione cellulare, inibire I'autofagia,
promuovere la fusione cellula-cellula e alterare il metabolismo con produzione di ROS, mentre nello
stroma l'infezione virale puo determinare un microambiente infiammatorio e immunodeficiente che
favorisce lo sviluppo del tumore. Per i dettagli, consultare il testo. Le frecce verso l'alto indicano
"induzione, iper-regolazione, stimolazione"; le frecce verso il basso indicano "deplezione, ipo-
regolazione, inibizione".

6.I1 vaccino anti-COVID-19 a mRNA e il cancro

Entrambi i vaccini anti-COVID-19 a mRNA BNT162b2 e mRNA-1273 sono costituiti da
nanoparticelle lipidiche contenenti 'mRNA completo (rispettivamente di 4284 e 4004 nucleotidi)
che codifica la proteina Spike; tuttavia, differiscono nelle regioni non tradotte 5’ e 3’, nella quantita
totale di mRNA (rispettivamente 30 pg/0,3 mL e 100 pg/0,5 mL) e la composizione chimica delle
nanoparticelle lipidiche (il lipide ionizzabile cationico e ALC-0315 e SM102, rispettivamente) [176].
Per prevenire la rapida degradazione del mRNA pro-vaccino all'interno delle cellule trasfettate, tutte le
uridine sono state sostituite da N1-metil-pseudouridina e diversi codoni sono stati modificati nel loro
terzo nucleoside per ottimizzare |'efficienza di traduzione [176].

La Spike vaccinale € identica alla proteina virale (ha il sito di scissione sensibile alla furina per la
divisione nelle subunita S1 e S2) ad eccezione delle sostituzioni degli amminoacidi 986 K (lisina) e 987
V (valina) con due proline per fissare la proteina nella forma pre-fusione [176]. Sebbene stabilizzato
nella conformazione pre-fusione, la Spike vaccinale puo legarsi ad ACE2 ed essere scisso dalla furina
[177]. Le modifiche di cui sopra possono spiegare perché I'mRNA e la proteina intatta o i frammenti
della Spike vaccinale persistono nella circolazione per lungo tempo e possono essere trovati in organi
distanti dal sito di iniezione del vaccino (deltoide) [178-181].

Inoltre, I'mRNA vaccinale e la proteina Spike possono viaggiare in tutto il corpo con gli esosomi [182], il
che aumenta il rischio di innescare reazioni epifenomeniche associate a gravi effetti avversi in vari
organi [108,183,184]. La tecnologia del vaccino a mRNA si basa sulla sintesi endogena
dell'immunogeno (in questo caso, la proteina Spike) che viene ulteriormente elaborata dalle cellule
presentanti I'antigene per istruire i linfociti a produrre anticorpi neutralizzanti e a montare una
risposta immunitaria delle cellule T [185].
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Il fatto che la proteina esogena guidata da un mRNA modificato sia sintetizzata all'interno delle
cellule ospiti e che parti di essa o dei suoi frammenti (poiché puo essere scissa dalla furina) possano
essere esposte sulla membrana di qualsiasi cellula (poiché I'mRNA viene trasportato tramite
nanoparticelle lipidiche) aumenta il rischio di ingannare il sistema immunitario, il che si aggiunge ai
danni tissutali causati dall'interazione Spike-ACE2.

Gli effetti avversi gravi e talvolta (fortunatamente rari) fatali associati alla vaccinazione con mRNA
anti-COVID-19 sono stati trattati in altri articoli [108,183,184,186,187] e non sono oggetto del presente
articolo, poiché qui ci concentriamo sul potenziale effetto pro-cancerogeno della vaccinazione COVID-
19 con tali prodotti. Esistono diversi meccanismi e percorsi che potrebbero collegare I'mRNA anti-
COVID-19 con un aumento del rischio di progressione del cancro, alcuni dei quali sono comuni a
quelli associati all'infezione da SARS-CoV2 (la proteina Spike; le citochine inflammatorie) e altri che
sono specifici del vaccino a mRNA, associati alla sua peculiare composizione (la presenza di
pseudouridina; la presenza di impurita come mRNA troncati e tracce di DNA; la presenza di lipidi
cationici infiammatori) e al programma di vaccinazione che prevede diverse somministrazioni in
un arco di tempo troppo breve. Quest'ultimo ha delle implicazioni in quanto espone la persona
vaccinata a un maggiore rischio di infezione, facilitando cosi I'esposizione agli effetti collaterali del
SARS-CoV2 sopra descritti.

A differenza della proteina Spike virale, la proteina Spike del vaccino non e stata associata a una
disregolazione dell'autofagia e del metabolismo energetico. Tuttavia, altri fattori possono collegare la
proteina Spike del vaccino a processi che potenzialmente aumentano il rischio di carcinogenesi, come
illustreremo nei prossimi paragrafi.

6.1. La proteina Spike del vaccino mostra proprieta pro-cancerogene simili a quelle della proteina
Spike virale

La proteina Spike vaccinale condivide caratteristiche strutturali molto simili a quelle della
proteina Spike virale in termini di legame con i recettori di superficie e quindi di attivazione di vie
di segnalazione simili.

In breve, richiamando quanto documentato per la controparte virale, la proteina Spike vaccinale ha il
potenziale di (i) esaurire 'ACE2 legato alla membrana e solubile (vedere Sezione 5.1); (ii) attivare le
vie oncogeniche ERK/MAPK, EGFR-AKT, AXL e SNAIL-TGFB (vedere Sezioni 5.1 e 5.2); (iii)
interagire con gli ER nelle cellule del cancro alla mammella (vedere Sezione 5.2), (iv) interferire con la
stabilita e l'attivita trascrizionale del soppressore tumorale TP53 (vedere Sezione 5.3); (v) indurre la
formazione di sincizi (vedere Sezione 5.4).

Gli effetti conseguenti di queste azioni includono la promozione della proliferazione cellulare e
della migrazione cellulare, I'induzione dell'EMT e I'inibizione della morte cellulare, come discusso
in dettaglio nella Sezione 5.

E importante sottolineare che la breve protezione indotta dai vaccini a mRNA contro la COVID-
19 richiede vaccinazioni frequenti e ravvicinate, con conseguente risposta immunitaria
tollerogenica e conseguente aumento della suscettibilita all'infezione da SARS-CoV-2, che crea le
condizioni in cui e probabile che si attivino questi percorsi pro-cancerogeni non genotossici.

6.2. Effetti molecolari, biochimici, genetici ed epigenetici del vaccino a mRNA: ipotesi
sull’imprevedibile

A causa della protezione brevettuale, i dati sulla tecnologia di produzione e sul controllo di
qualita dei vaccini a mRNA contro la COVID-19 sono scarsi [176]. Quanto segue & quindi
inevitabilmente teorico e basato sulle limitate informazioni disponibili. La trascrizione in vitro
diretta dalla RNA polimerasi T7 di uno “stampo” di DNA produce I'RNA desiderato, ma presenta
anche alcuni inconvenienti, come la generazione di specie di RNA indesiderate, tra cui RNA a doppio
filamento e una miscela di trascrizioni abortive corte di varia lunghezza. La presenza sul mercato di
diversi lotti di vaccini con composizione diversa a causa della produzione e del controllo qualita non
standardizzati rimane controversa, negata da alcuni studi e confermata da altri [176,188]. A questo
proposito, e stato riscontrato che alcuni lotti di BNT162b2 contenevano in media solo il 50% di
mRNA intatto codificante Spike, mentre il resto era costituito da frammenti di varie lunghezze
[188,189]. Questi frammenti potrebbero teoricamente fungere da spugne per una varieta di mRNA
cellulari e compromettere la sintesi delle relative proteine. Tuttavia, la sequenza di questi frammenti
non & mai stata rivelata e, pertanto, la loro possibile interferenza sulla traduzione degli mRNA
cellulari rimane speculativa.
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La sostituzione delle uridine con N1-metilpseudouridina inganna il meccanismo di lettura nella
traduzione del'mRNA in proteine, causando spostamenti della cornice di lettura dei codoni con la
conseguenza di sintetizzare proteine non intenzionali [190] che potrebbero avere conseguenze
imprevedibili [191]. E piuttosto rassicurante che un mRNA sintetico simile al'mRNA codificante Spike
BNT162b2 con N1-metilpseudouridina al 100% sia stato trovato tradotto in proteina Spike intatta
quando espresso nelle cellule HEK293 [192]. In vivo, la storia & diversa. Gli mRNA contenenti N1-
metilpseudouridina non stimolano efficacemente le cellule dendritiche, con una ridotta produzione di
interferone di tipo I (che esercita funzioni antitumorali) e una diminuzione dell'attivita citotossica dei
linfociti T, e questo potrebbe essere rilevante per la risposta immunitaria antitumorale [193].
Coerentemente, la vaccinazione con BNT162b2 modula le risposte immunitarie innate aumentando la
produzione delle citochine inflammatorie IL-1f e IL-6, mentre diminuisce quella dell'IFN-a [194].
Tale scenario immunosoppressivo e permissivo nei confronti dei tumori & stato riportato in un
modello in vivo di melanoma (che esprime OVA) per la vaccinazione contro il cancro con mRNA
modificato con N1-metilpseudouridina che codifica l'antigene tumorale transgenico (OVA,
ovoalbumina) incapsulato in nanoparticelle lipidiche [195]. Mentre il vaccino OVA con mRNA non
modificato ha provocato effetti antitumorali caratterizzati da una forte infiltrazione di cellule
dendritiche DC CD40+ e cellule T secernenti IFN-y specifiche per OVA, la vaccinazione con mRNA
modificato con pseudo-uridina ha notevolmente ridotto l'immunogenicita (diminuzione della
produzione di IFN-y e delle cellule T CD8+ produttrici di TNFa) nonostante la massima efficienza
di traduzione, con conseguente aumento della crescita tumorale e del numero di metastasi
polmonari [195].

L'editing dell'adenosina in inosina nellRNA & un processo co-trascrizionale catalizzato

dall'adenosina deaminasi ADAR1 che agisce su porzioni a doppio filamento dell'RNA immaturo e puo
potenzialmente determinare cambiamenti nel trascrittoma e nel proteoma, poiché l'inosina viene letta
come guanosina. La modifica dell'RNA puo coinvolgere regioni codificanti e non codificanti e puo
influenzare la stabilita, lo splicing alternativo e la traduzione degli mRNA, nonché 1'elaborazione e il
targeting specifico degli RNA non codificanti. L'iperespressione di ADAR1 e I'aumento complessivo della
modifica dell' RNA sono stati associati al fenotipo maligno [196]. Uno studio recente ha dimostrato che
I'espressione di ADAR1 nel sangue dei vaccinati aumenta con il numero di dosi di pro-vaccino mRNA
anti-COVID-19 [197].
Sebbene questa osservazione non sia sufficiente per stabilire un possibile legame con il cancro, &
piuttosto preoccupante che tra i primi tre geni con un editing A-to-I significativo vi sia la proteina
fosfatasi Slingshot (SSH), una fosfatasi cofilina nota per promuovere l'invasivita e le metastasi del cancro
[198].

Un altro aspetto preoccupante del vaccino a mRNA contro la COVID e che I'ottimizzazione con
guanosina-citosina (GC) arricchita e N1-metilpseudouridina potrebbe favorire la formazione di
tetradi di guanina chiamati G4 (G quadruplex), noti per destabilizzare il DNA e spesso presenti nei
tumori [199,200]. 11 G quadruplex é un bersaglio preferenziale del complesso repressore Polycomb
II, che esercita un controllo epigenetico sulla trascrizione genica [200]. Tuttavia, per provocare un
possibile effetto dannoso sui meccanismi di trascrizione e riparazione del DNA, I'mRNA
(frammenti) ricco di G del vaccino dovrebbe ricollocarsi nel nucleo della cellula. Questa eventualita
sembra molto improbabile, anche se non puo essere esclusa.

C'e pero un altro problema: a seguito di una modifica nella procedura di produzione (che ora
utilizza il plasmide del DNA invece della PCR per produrre I'mRNA Spike), sono state trovate tracce
di impurita del DNA nel vaccino BNT162b2 mRNA [201], anche se il significato biologico di questa
scoperta é ancora sconosciuto e merita ulteriori approfondimenti.

6.3. Interruzione della sorveglianza immunitaria e induzione dell’infiammazione: creazione delle
condizioni per il risveglio del tumore dormiente

Nella Sezione 5.7 abbiamo discusso i meccanismi molecolari e cellulari attraverso i quali il SARS-CoV2
potrebbe interrompere la dormienza tumorale. Rispetto all'infezione da SARS-CoV2, l'iniezione del
LNP-mRNA pro-vaccino comporta un ulteriore stress per il microambiente tumorale per i seguenti
motivi: 1. La vaccinazione ripetuta sposta la risposta immunogenica verso una risposta tollerogenica
e pro-infiammatoria e una soppressione complessiva della risposta immunitaria; 2. La componente
lipidica della nanoparticella & fortemente infiammatoria. A causa della breve durata della protezione
offerta dal vaccino anti-COVID-19 mRNA, e stata raccomandata una vaccinazione ripetuta in media
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ogni 6 mesi. Tuttavia, i richiami ripetuti con vaccini Spike mRNA modulano il sistema immunitario
adattativo, portando a un passaggio da una risposta immunitaria a una tollerogenica.

Dopo tre dosi, in quasi la meta dei vaccinati & stato osservato un cambiamento di classe dalle IgG1
e IgG3 immunoreattive alle IgG4 tollerogeniche [63]. Uno studio molto recente ha dimostrato che nei
bambini il livello sierico di IgG4 anti-Spike continua ad aumentare fino a un anno dopo la seconda dose
di Comirnaty [202]. Esperimenti di vaccinazione con mRNA codificante per il dominio di legame al
recettore della proteina Spike del SARS-CoV2 nei topi hanno confermato che i richiami ripetuti
determinano una condizione di tolleranza immunitaria umorale e cellulare [203]. Vale la pena notare
che una ricerca bibliografica e una meta-analisi hanno rilevato che livelli elevati di [gG4 aumentano il
rischio di sviluppare il cancro, in particolare il cancro al pancreas e il linfoma [204]. E stato dimostrato
che la concentrazione locale di IgG4, indipendentemente dalla specificita dell'antigene, favorisce
I'evasione immunitaria nel microambiente tumorale, inibendo la citotossicita del cancro mediata dalle
IgG1 [205].

L'immunita delle cellule T svolge un ruolo importante nella risposta antitumorale e nel
mantenimento delle micrometastasi dormienti (dormienza immunogenica) [206]. Sfortunatamente, &
stato dimostrato che vaccinazioni multiple con vaccini anti-COVID-19 a mRNA causano I'esaurimento
delle cellule T e un aumento dell'espressione di PD-1 [86]. Uno studio di fase II ha riportato una
linfopenia transitoria in circa il 50% dei vaccinati con una dose (30 o 100 pg) di BNT162b1, e nel 33%
di coloro che hanno ricevuto la dose piu alta (100 pg) la linfopenia era di grado 3 [207]. A contribuire
ulteriormente all'interruzione del microambiente tumorale immunitario associato alla dormienza é il
fatto che questi vaccini pro-mRNA possono innescare una forte risposta inflammatoria con livelli elevati
di IL-17 circolante [208] e, in particolare nei pazienti oncologici precedentemente infettati da SARS-
CoV2, una conversione delle cellule T di memoria verso il fenotipo CD8 IL-17+ pro-infiammatorio [84].
E noto che I'lL-17 promuove la proliferazione delle cellule tumorali oltre a compromettere la risposta
antitumorale mediata dai linfociti T [209].

Livelli aumentati di citochine circolanti (tra cui IL-6 e IL-17) e fattori di crescita (tra cui VEGF
e bFGF) possono essere rilevati nei vaccinati fino a un anno dopo la vaccinazione con mRNA anti-
COVID-19 Comirnaty [210]. Ipoteticamente, queste citochine e questi fattori di crescita potrebbero
interrompere la dormienza tumorale mediata dall'autofagia [98,174] e dall'angiogenesi [211].

A contribuire ulteriormente a un microambiente infiammatorio potenzialmente tumorigenico
¢ il componente LNP, che si ritiene funzioni come adiuvante stimolatore immunitario. E stato
dimostrato che il componente cationico LNP del vaccino a mRNA induce il rilascio di citochine
inflammatorie (principalmente IL-6, TNF e IL-1) da parte dei macrofagi e attiva il complemento
sierico attraverso la via alternativa [212]. Cio potrebbe spiegare il cosiddetto
"fenomeno di richiamo da radiazioni" che si manifesta nei pazienti oncologici pochi giorni dopo la
seconda dose del vaccino a mRNA BNT162b2 [213].

Nel complesso, la vaccinazione continuativa con questi vaccini a mRNA contro la COVID-19
compromette il sistema immunitario innato e adattativo e mantiene uno stato infiammatorio
elevato con sovrapproduzione di IL-6 e IL-17, insieme all'inibizione dell'autofagia e alla
stimolazione delle vie AXL e VEGFR che, nel loro insieme, favoriscono il risveglio dei tumori
dormienti e la progressione del cancro. Gli effetti cellulari e sistemici e le possibili conseguenze
correlate al cancro della vaccinazione anti-COVID-19 a mRNA sono illustrati schematicamente nella
Figura 3.
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Figura 3. Le vaccinazioni anti-COVID-19 a mRNA possono provocare effetti pro-tumorigenici
influenzando l'omeostasi cellulare e stromale. Le dosi multiple, necessarie per mantenere la
protezione immunitaria, possono portare a un microambiente tumorale infiammatorio e
immunotollerante, insieme alla stimolazione dell'angiogenesi, che insieme creano le condizioni per il
risveglio dei tumori dormienti. La presenza di un mRNA intrinsecamente anomalo (ricco di N-metil-
pseudouridina) e di frammenti di mRNA, insieme agli effetti mediati dalla proteina Spike sulla
segnalazione dei recettori di membrana, puo introdurre ulteriori rischi che favoriscono la malignita.

Per i dettagli, consultare il testo. (* indica che la proteina Spike codificata dal mRNA pro-vaccino
presenta aminoacidi modificati). Le frecce verso l'alto indicano "induzione, iper-regolazione,
stimolazione"; le frecce verso il basso indicano "deplezione, ipo-regolazione, inibizione".

7.Dati dal mondo reale: casi clinici che collegano la vaccinazione
anti-COVID-19 a mRNA e il cancro

Sebbene supportati dall'enorme quantita di dati presenti in letteratura, i meccanismi e i
percorsi sopra illustrati sono solo indicativi del potenziale cancerogeno dei vaccini a mRNA contro
la COVID-19. Non esistono ricerche specifiche incentrate sulla prognosi del cancro e sugli eventi
fatali nei pazienti oncologici vaccinati in relazione alla COVID-19, ad eccezione di uno studio che
riporta la correlazione causale in due pazienti su tre [71].

E i dati provenienti dal mondo reale? Recentemente, uno studio retrospettivo basato sulla
popolazione condotto su un ampio gruppo di individui non vaccinati (595.007) e vaccinati (2.380.028)
a Seul (Corea del Sud), in cui sono state misurate le incidenze cumulative e il corrispondente rapporto
di rischio dei tumori un anno dopo la vaccinazione contro la COVID-19, ha riscontrato un'associazione
tra la vaccinazione e un aumento del rischio di tumori alla tiroide, allo stomaco, al colon-retto, al
polmone, alla mammella e alla prostata [214].

In assenza di una farmacovigilanza attiva per raccogliere dati che affrontino specificamente
la possibile correlazione, se non causalit3, tra la vaccinazione con mRNA contro la COVID-19 e il cancro,
ci basiamo sui casi clinici riportati in letteratura.

Le tabelle 1 e 2 riassumono i casi noti, riferendosi rispettivamente ai vaccini anti-COVID-19 a
mRNA di Pfizer e Moderna (tabella 1) e ad altri tipi di vaccini genetici anti-COVID-19 (tabella 2).

Sebbene, se considerati singolarmente, i casi clinici possano essere liquidati come fatti aneddotici,
se considerati nel loro insieme, una serie di segnalazioni che convergono sulla stessa conclusione
dovrebbe destare sospetti e stimolare una discussione nella comunita scientifica.
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Tabella 1. Casi clinici che mettono in relazione il cancro con i pro-vaccini mRNA contro la COVID-19.
Malattia (insorgenza) Caratteristiche cliniche Caratterl_?'tlch(-:’ istologico- Tipo di Vaccino Ref.
biologiche
Uomo di 66 anni presentava
Linfoma T linfoadenopatie; aumento del BNT162b2
angioimmunoblastico numero, delle dimensioni e Mutazioni genetiche: RHO, TET2, [215]
(insorgenza 6 mesi dopo dell'attivita metabolica dei DNMT3A, IDH2 (marzo, aprile,
la seconda dose) linfonodi 8 giorni dopo la terza settembre 2021)
dose
Uomo di 79 anni in remissione
Recidiva di malattia jlft;lrr:elcl)n;: gg’n‘zgﬁ)af Zj{fij; Disturbo linfoproliferativo CD-30-
linfop rollfe.ratl'v a cellule guarito due anni prima; positivo; rlarrafzglamento del BNT162b2 [216]
ascellare (2 giorni dopo si presentava con tumore gene TCR corrispondente al
la prima dose) p . precedente clone del 2019
ulcerato con eritema
circostante
Una donna di 80 anni si é
Linfoma a cellule B della | presentata con linfoadenopatie
zona ma'rgmale nodale . multiple (1'1. 12) alla sett{mana Cellule linfoidi positive per CD20, BNT1 6?b2
(improvvisa comparsa di 6 dalla prima dose (settimana . (2 dosi, a
. CD79a e BCL-2; negative per CD3, ; . [217]
massa temporale il 3 dalla seconda dose); aumento BCL6 distanza di 3
giorno dopo la prima del numero (>22) e delle settimane)
dose) dimensioni (2,5x) in dieci
settimane
Una donna di 58 anni che
, . presentava una massa
.me omanon Hodg kin tumorale all'angolo della NHL DLBC confermato positivo
diffuso a grandi cellule B . Lo . . BNT162b2
. ghiandola parotide sinistra in per CD20, PAX5 e negativo per .
(comparsa di una massa . ; . N (22 maggio; 12 [218]
; . progressiva crescita da giugno CD30, AE1/AE3; positivita Ki-67 .
cervicale una settimana . . , giugno 2021)
a settembre con linfonodi all'85%
dopo la seconda dose) - Co
reattivi multipli, e infine
operata nell'ottobre 2021
Linfoma maligno Uomo di 53 anni presentato
extranodale non Hodgkin (dicembre 2021) con lesioni Proliferazione tumorale con
o . ; . . BNT162b2, 6
a cellule T/NK (lesioni ulcerative multiple orali cellule T positive per CD3 e CD7, novembre: 28 [218]
ulcerative comparse 3 comparse poco dopo la prima granzima B, CD30; negative per novembre 2 021
giorni dopo la prima dose e peggiorate dopo la CD4, CD8 e CD20
dose) seconda dose
(A) Donna di 49 anni con
petecchie e bicitopenia, con
diagnosi di leucemia
(A) Leucemia linfoblastica acuta a cellule B;
liln’jj Z?‘Iiasm;l acgrt:ll (Zue (B) Donna di 47 anni; con
9 Odi OI;Z a me;A)?Se diagnosi di linfoma a cellule B (A) B-ALL: il midollo osseo ha
vaccino a ’ avvenuta due anni prima, in mostrato il 20-30% di cellule
. . , remissione negli ultimi 14 mesi; blastiche colorate con TdT
(B) recidiva di leucemia diffusament it - CD19:
linfoblastica acuta B usamente positiva pe ’ BNT162b2 [219]

(dopo la prima dose di
vaccino a mRNA);

(C) recidiva di leucemia
mieloide acuta (dopo il
richiamo con BNT162b2)

(C) Donna di 67 anni; con
diagnosi di leucemia mieloide
acuta (LMA) nel 2007 e in
remissione negli ultimi 14 anni
dopo il trapianto di midollo
osseo. Ha ricevuto due dosi di
vaccino inattivato contro il
SARS-CoV2 a luglio 2021 e
mRNA BNT162b2 a settembre
2021.

(B) bicitopenia e blasti;

(C) 90% di blasti
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Tabella 1. Continua.
Malattia (insorgenza) Caratteristiche cliniche Caratterl_?tlchtf istologico- Tipo di Vaccino Ref.
biologiche
o , .
(A) Uomo di 61 anni; 30 giorni (4) 80% infiltrazione blastica;
dopo la terza dose di mRNA; (B) bicitopenia; infiltrazione
(B) Donna di 28 anni; 2 blastica;
Quattro casi di leucemia settimane dopo la seconda dose; , o0
mieloide acuta, uno dei (I%‘I’;ZZZ"TZBZ;ZS gfa/f’ BNT162b2 [220]
quali extramidollare (C) Uomo di 72 anni; 5 settimane ’
dopo la quinta dose; (D) sarcoma granulocitico
; . occipitale di cellule immature
(D) Uomo di 60 anni; Imese | 34" r1y1 93 0 MPQ positive; 30%
dopo la quarta dose L
blasti mieloidi
Linfoma diffuso a grandi Un uomo di 67 anni si é , I linfociti grandi e atipici erano
presentato con una massa di S
cellule B . ; . positivi per CD20, BCL2 e MUM- BNT162b2
. L linfoadenopatia sottocutanea di -
(la linfoadenopatia é ) . 1/IRF4; negativi per CD3; [221]
, 6 cm nell'ascella sinistra 2 o ; ; (2 dosi)
stata osservata un giorno . positivita per Ki-67 superiore
dopo la prima dose) settimane dopo la seconda all'80%
vaccinazione con BNT162b2
Una donna di 80 anni si é
presentata con un nodulo
Linfoma diffuso a grandi | ascellare ingrossato di 4,1 cm che Linfoma DLBC a cellule B del
cellule B si é sviluppato 1 giorno dopo la centro germinativo positivo per BNT162b2
(la linfoadenopatia é seconda dose; due mesi dopo il CD20, BCL6, BCL2; negativo per ) [221]
stata osservata due giorni nodulo é aumentato a 6 cm e CD3 e MUM-1/IRF4; positivita Ki- (2 dosi)
dopo la prima dose) sono comparse ulteriori lesioni 67 superiore al 90%
nel mesentere e nel seno
cavernoso sinistro
Un uomo di 76 anni ha
. . presentato una Ies'u')n'e arap ida Linfoma anaplastico a grandi BNT162b2
Linfoma anaplastico crescita nel sito di iniezione 10 L
cutaneo primario a giorni dopo la terza dose. Un cellule TIbNOMO; positivo per (1stand Znd dose)
grandi cellule (10 giorni | mese dopo é stato diagnosticato (D30, D4, CDZ, CD5, MUM1 e Moderna mRNA- [222]
. . negativo per CD20, CD8, TIA1,
dopo la terza dose) un grosso tumore eritematoso di | % e " n el oD 100 ceg 127
6 cm di diametro. Regressione ’ ! ’ (3rd dose)
spontanea dopo 6 settimane.
Donna di 73 anni; storia di
angiomiolipoma nel 2019; si é
presentata con gonfiore 2-4 Sarcoma di alto grado, pleomorfo, mRNA-1273
Sarcoma di alto grado giorni dopo la seconda dose, indifferenziato, di grado 3, stadio moderno [223]
sviluppato in una massa molle di 1A (2 dosi)
6 cm di diametro nella parte
superiore del braccio destro
Serie di 14 casi, di cui 6
Malattie linfoproliferative classificati come recidiva e 8
P ; come lesioni primarie; remissione NA. BNT162b2 [224]
cutanee primarie ; ;
completa e parziale entroi 19
mesi di follow-up
Un uomo di 66 anni si é
Linfoma non-Hodgkin ' presentgto con una LGfoma anqplastlco a gran.dz BNT162b2
(poche settimane dopo la linfoadenopatia ascellare destra | cellule di stadio Il, ALK negativo e G 0. Febbrai [225]
p terza dose) sviluppatasi 10 giorni dopo la CD30 positivo, oltre il 90% di (Gennaio, Febbraio,
terza dose, che é cresciuta fino a positivita al Ki-67 Ottobre 2021)
7 cm al minuto dopo 3 mesi
Donna di 75 anni con una storia
oftalmologica complessa che L'epitelio congiuntivale mostra
Sarcoma di Kaposi include, tra gli altri, glaucoma metaplasia squamosa precoce e
classico congiuntivale uveitico OU, membrana immunocolorazione positiva con BNT162b2 [226]
(poche settimane dopo il epiretinica OU e degenerazione HHV8 all'interno della (tre dosi)
richiamo del vaccino) maculare cistoide 0S, si é proliferazione vascolare positiva
presentata con area per CD34
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Tabella 1. Continua.

Malattia (insorgenza)

Caratteristiche cliniche

Caratteristiche istologico-
biologiche

Tipo di Vaccino

Ref.

Carcinoma basaloide,
erroneamente curato come
paralisi di Bell per quasi 8
mesi (i sintomi sono
comparsi 4 giorni dopo la
prima dose)

Uomo di 56 anni; nessun
problema di salute
pregresso; si é presentato
con un tumore basaloide
massiccio e
aggressivamente
infiltrante sul lato destro
del viso, che é progredito
rapidamente e ha portato
il paziente al decesso. La
TAC (11 mesi dopo la
vaccinazione) ha rivelato
la presenza di masse
tumorali infiltranti nella
ghiandola parotide,
probabilmente di origine
cutanea.

Il valore del D-dimero era di
1523 ng/mL (il range
normale é <500 ng/mL). La
biopsia ha confermato la
diagnosi di carcinoma
basocellulare.

BNT162b2
(Una dose)

[227]

Leucemia linfoblastica
acuta a cellule B
Philadelphia-positive
(cinque giorni dopo la
vaccinazione di richiamo
con vaccino mRNA
bivalente)

Donna di 43 anni;
anamnesi medica
precedente insignificante;
presentava splenomegalia,
grave anemia e
trombocitopenia insieme a
leucocitosi (1,0%
neutrofili, 9,0% linfociti,
0% monociti, eosinofili e
basofili e 90,0% blasti)

Il midollo osseo mostra
un'infiltrazione blastica del
68%; le cellule erano
positive per CD34 e TdT,
negative per CD117 e MPO.
Il riarrangiamento del gene
p190 BCR-ABL1 e stato
identificato tramite RT-PCR

Cinque vaccinazioni
come segue: due dosi
di
Oxford/AstraZeneca
(4 giugno e 31
agosto 2021); mezza
dose di Moderna
mRNA-1273 (15
gennaio 2022),
NovaVax (15 luglio
2022) e dose di
richiamo del vaccino
bivalente
(contenente
Omicron BA.4/BA.5)
mRNA-1273 COVID-
19 (gennaio 2023)
piu infezione da
SARS-CoV-2il 19
agosto 2021

[228]

Linfoma della zona
marginale positivo al virus
di Epstein-Barr (EBV +
MZL) all'autopsia (17
giorni dopo la prima
vaccinazione)

Donna di 71 anni con
anamnesi di artrite
reumatoide trattata con
metotrexato; deceduta per
trombosi e insufficienza
multiorgano 17 giorni
dopo la vaccinazione.
L'autopsia ha rivelato una
linfoadenopatia sistemica
comprendente linfociti
atipici e cellule di tipo
Hodgkin/Reed-Sternberg
(H/RS) sparse.

1 linfociti atipici erano
positivi per CD79a, CD19,
piccoli RNA codificati da

EBV e MUM-1 e negativi per
CD3, CD5, CD10, BCL6. Le
cellule simili a H/RS erano
positive per CD3

Non specificato il
tipo di vaccino anti-
COVID-19

[229]
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Tabella 1. Continua.

Malattia (insorgenza)

Caratteristiche cliniche

Caratteristiche istologico-
biologiche

Tipo di Vaccino

Ref.

Linfoma intravascolare a
grandi cellule B all'autopsia
(105 giorni dopo la seconda

dose)

Una donna di 61 anni
affetta da lupus
eritematoso sistemico é
guarita 1 mese dopo la
vaccinazione da dolori
articolari, spasmi clonici,
paralisi del lato sinistro e
febbre

Diagnosi di linfoistiocitosi
emofagocitica con
infiltrazione intra- e
perivascolare di linfociti B
atipici CD20-positivi nella
milza, nel fegato e nei
polmoni

Vaccino Pfizer
BNT162b2 mRNA (2
dosi a distanza di un

mese)

[230]

Melanonichia longitudinale
che e progredita in
melanoma subungueale

Donna di 53 anni affetta
da melanonichia
longitudinale senza
fattori di rischio noti per
lo sviluppo di melanoma

Trasformazione maligna in
melanoma lentigginoso
acrale entro 2 anni dalla
vaccinazione

Vaccino Pfizer
BNT162b2 mRNA (3
dosi)

[231]

Metastasi cutanea del
cancro alla mammella che
si é manifestata 1 mese
dopo la sesta dose di
vaccinazione mRNA

Donna di 85 anni affetta
da tumore alla
mammella asportato con
successo tramite
mastectomia parziale con
margini netti 2 anni
prima

Le cellule tumorali
metastatiche nel derma e
nell'epidermide mostravano
cellule atipiche pagetoidi con
ampie caratteristiche
citoplasmatiche ed erano
positive per la proteina
spike, ma non per la proteina
nucleocapside di SARS-CoV-2

Pfizer-BioNtech
BNT162b2 (sei dosi
in 2 anni)

[232]
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Tabella 2. Casi clinici che collegano il cancro ai vaccini genetici anti-COVID-19 diversi da quelli a mRNA.
Malattia Caratteristiche cliniche Tipo di vaccino Rif.
. Uomo di 63 anm;feocjromoczt(.)ma (tumore , Vaccino COVID-19 di Johnson &
Feocromocitoma benigno molto raro) di 7 cm sviluppato pochi Johnson [233]
giorni dopo la vaccinazione
Recidiva del linfoma cutaneo a I Iirlzfonflza' a Celh.”e.Té stato Seg_nala'to in due .
cellule T pazienti, in remissione da molti anni, dopo la | Vaxzevria (Oxford/AstraZeneca) [234]
seconda dose
Uomo di 51 anni; é stato segnalato un
. , . linfoma diffuso a grandi cellule B in rapida
Linfoma diffuso a g.rc'mdl cellule B crej;cita in]?;n cuoge post-trapiantato (sotto Vaccino ChAdOx1InCoV-19 [235]
EBV-positivo L . . .
terapia immunosoppressiva da molti anni) 7
giorni dopo aver ricevuto la prima dose
Donna di 28 anni; é stato segnalato un
Linfoma cutaneo primario a linfoma cutaneo primario ce{lule T(CD31, Vaccino Janssen contro il COVID-
cellule T CD7?, CPB] p051.t1\{o) c_he simula una 19 [236]
pannicolite pochi giorni dopo la prima
vaccinazione
Donna di 74 anni; le é stata diagnosticata
leucemia mielomonocitica cronica e
sclerodermia, con i primi segni manifestatisi
Leucemia mielomonocitica due giorni dopo aver ricevuto la prima dose, Vaccino COVID-19 di Johnson & [237]
cronica che poi sono progrediti in leucemia mieloide Johnson
acuta, anemia grave e trombocitopenia, e
infine e deceduta a causa di insufficienza
respiratoria associata alla COVID-19.
Il sarcoma di Kaposi classico si e Uomo di 73 anni con un nodulo cutaneo di
manifestato 7 giorni dopo la 2x3x1 cm HIV negativo, positivo per CD34 e Vaccino ChAdOxInCoV-19 [238]
terza dose del vaccino ChAdOx1 HHV-8

8.Discussione e considerazioni finali

La vaccinazione anti-COVID-19 ha contribuito, almeno nella fase iniziale della sua diffusione, a
gestire la COVID-19 riducendo i ricoveri ospedalieri dei vaccinati e alleggerendo cosi il carico di
lavoro degli operatori sanitari [239,240], anche se la sua reale efficacia nel proteggere dalla morte i
pazienti ricoverati in ospedale € stata recentemente messa in discussione [241,242]. Tuttavia, e stato
riscontrato che la protezione immunitaria fornita da questi vaccini a mRNA dura pochi mesi,
rendendo necessarie ulteriori dosi per mantenere i livelli di IgG anti-Spike. I vaccini sono generalmente
considerati sicuri per quanto riguarda la potenziale cancerogenicita e, pertanto, la loro approvazione
non richiede normalmente una prova sperimentale di non mutagenicita, a meno che il prodotto
iniettabile non contenga un componente mai testato sull'uomo e per il quale sia ragionevole
sospettare una potenziale attivita mutagena. Nel caso dei vaccini anti-COVID-19 a mRNA, si é ritenuto
che I'mRNA che codifica per la proteina Spike e I'LNP non avessero tale attivita mutagena. Sono
dello stesso parere e, personalmente, ritengo che questi "vaccini" non posseggano tale attivita.

Il cancro si sviluppa dopo diversi decenni dall'esposizione a sostanze mutagene, ma la
cancerogenesi potrebbe essere anticipata in individui con predisposizioni familiari a causa di
mutazioni ereditarie nei geni oncosoppressori o nei geni del sistema di riparazione del DNA (vedere
le sezioni 2.1 e 5). Pertanto, anche se condotti su animalj, il periodo di osservazione (generalmente
6-24 mesi) non sarebbe sufficiente per dimostrare la potenziale cancerogenicita dei vaccini in
animali "sani" (senza difetti genetici che predispongono al cancro) tenuti in gabbie in condizioni
standard senza ulteriori fattori inflammatori.

Tuttavia, una serie di casi clinici segnalati indica una correlazione temporale tra la
vaccinazione con vaccini anti-COVID-19 a base genetica e la nuova diagnosi di cancro e la
progressione del cancro.

Il cancro si manifesta clinicamente dopo che una serie di eventi endogeni, esogeni e
circostanziali hanno alterato la struttura e la composizione del parenchima e dello stroma.
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Oltre alle mutazioni genetiche, la disregolazione epigenetica, l'inflammazione (e I'angiogenesi), la
soppressione immunitaria, la disregolazione dell'autofagia, la compromissione della riparazione del
danno al DNA, I'attivazione della segnalazione per la proliferazione e la migrazione, l'inibizione della
segnalazione per la morte cellulare, 'aumento del metabolismo energetico, tutti questi eventi
contribuiscono allo sviluppo e alla progressione del cancro e al risveglio di tumori dormienti che
portano alla recidiva del cancro. Un'attenta revisione della letteratura attuale mostra che l'infezione
da SARS-CoV2 e le vaccinazioni (multiple) con LNP-mRNA potrebbero provocare un effetto
promotore del cancro attraverso diversi meccanismi, tra cui l'interruzione
dell'immunosorveglianza e l'induzione dell'inflammazione nel microambiente tumorale,
l'interruzione del controllo dell'autofagia, l'interruzione dei percorsi soppressori del tumore e
l'attivazione dei recettori chinasi coinvolti nella proliferazione cellulare, nella migrazione cellulare
e nell'EMT. Uno dei principali protagonisti di questi eventi e la proteina Spike, che puo portare alla
diminuita espressione dell'ACE2 protettivo e alla concomitante attivazione della via AXL.

Questi eventi potrebbero combinarsi ed essere attivati in modo ridondante nei pazienti che
sono stati vaccinati e hanno contratto l'infezione piu volte, e in un periodo di tempo relativamente
breve. Questa situazione sfortunata (effetto cocktail) determinerebbe una sinergia dei danni e delle
alterazioni causati dal virus e dal vaccino a mRNA, che puo portare a effetti "catastrofici": risveglio
di tumori dormienti (malattia residua minima; micrometastasi) e rapida progressione del cancro
(Figura 4). Questo scenario sarebbe piu probabile nei pazienti oncologici e negli individui con
cancro non diagnosticato, e ancora di piu negli individui suscettibili al cancro a causa di difetti
genetici predisponenti. Un segnale allarmante, anche se ignorato, é stato riportato in uno studio
multicentrico in cui sono stati segnalati casi di progressione del cancro e decessi in alcuni pazienti
vaccinati [71]. Per quanto riguarda i pazienti non affetti da cancro, un caso emblematico & quello di
una donna di 43 anni senza una storia clinica significativa a cui e stata diagnosticata una LLA Ph-
positiva pochi giorni dopo la vaccinazione con il doppio vaccino mRNA-1273 somministrato in
aggiunta a quattro precedenti vaccinazioni con diversi vaccini anti-COVID-19 piu infezioni da SARS-
CoV2 [228].

Spike LNP

Viral mRNA mRNA* Spike
mRNA* fragments
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Repeated
shots
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ACE2 AKT-ERK-
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Figura 4. L'infezione da SARS-CoV2 e le ripetute vaccinazioni anti-COVID-19 con mRNA possono
essere cancerogene? Il virus SARS-CoV2 entra attraverso il tratto aerodigestivo e sfrutta la proteina Spike per
infettare solo (principalmente) le cellule ACE2-positive nei polmoni, nell'intestino, nell'endotelio e in altri
organi distanti, tra cui cuore, fegato e reni. Nella cellula infetta, il virus puo essere degradato dalla via
autofagica-endocitica-lisosomiale oppure puo riprodursi ed uscire per infettare le cellule vicine. Il vaccino anti-
COVID-19 é costituito da nanoparticelle lipidiche (LNP) contenenti I'mRNA modificato che codifica per la
proteina Spike e, possibilmente, anche frammenti dell'mRNA modificato. Il vaccino viene iniettato nelle fibre
muscolari deltoidi, che espongono sulla membrana la proteina S per allertare il sistema immunitario. La
proteina S e i suoi frammenti possono essere rilasciati ed endocitati dalle cellule che elaborano l'antigene
(macrofagi e cellule dendritiche) per innescare la produzione di anticorpi da parte dei linfociti B attivati.
Tuttavia, le LNP possono trasfettare 'mRNA del vaccino in qualsiasi cellula. Inoltre, 'mRNA del vaccino e la
proteina Spike possono raggiungere organi distanti all'interno degli esosomi. Sia il SARS-CoVZ2 che il vaccino
anti-COVID-19 LNP-mRNA influiscono sui processi omeostatici cellulari e inducono disfunzioni immunitarie e
infiammazioni dell'ambiente tissutale, tutte condizioni che potrebbero portare al risveglio di un tumore dormiente
o di micrometastasi e favorire la proliferazione e l'invasivita del cancro. In dettaglio, la proteina Spike (derivata dal
virus o dal vaccino) puo 1. portare alla deplezione dell'’ACEZ2, con conseguente abbondanza di angiotensinogeno 2
con proprieta mitogeniche e angiogeniche (mentre I'Ang1-7 prodotto dall’ACE2 avrebbe proprieta pro-apoptotiche
e anti-angiogeniche); 2. causare la fusione cellula-cellula, che porta alla poliploidia e ad anormali riarrangiamenti
cromosomici; 3. promuovere le vie di proliferazione AKT ed ERK e la via migratoria SNAIL. Inoltre, l'infezione virale
da SARS-CoV2 potrebbe interferire con le vie oncosoppressive, compromettere il controllo dell'autofagia, indurre la
conversione metabolica in senso glicolitico e innescare la tempesta di citochine guidata dall'IL-6. D'altra parte, cicli
ripetuti di vaccinazione con mRNA modificato causano disfunzioni immunitarie, portando a tolleranza mediata da
IgG4 e interruzione della sorveglianza immunitaria, mentre I'LNP causa infiammazione. L'inflammazione (e
l'angiogenesi) e la soppressione immunitaria infine creano un microambiente tissutale permissivo per il risveglio di
tumori dormienti e micrometastasi, promuovendo cosi la crescita e l'invasivita delle cellule tumorali. (* indica che
I'mRNA del vaccino é modificato. LNP, liponanoparticella).

Va notato che i casi clinici qui discussi non stabiliscono una relazione causale tra il vaccino e il
cancro. Una tale valutazione richiederebbe un'indagine "ad hoc" [15].

Data l'impossibilita pratica di dimostrare un nesso causale, la plausibilita biologica del legame
tra il virus SARS-CoV2 e il vaccino anti-COVID-19 a mRNA con il cancro deve suggerire cautela
nell'uso di questo tipo di vaccini e, nel frattempo, adottare misure adeguate per proteggere i pazienti
arischio (in particolare i malati di cancro) dall'infezione, in attesa che i produttori di vaccini tengano
conto di quanto qui espresso per progettare vaccini piu sicuri ed efficaci. Le presenti osservazioni
richiedono una maggiore cautela nell'uso di questo tipo di vaccini, tenendo conto del potenziale
rischio di innescare il risveglio di tumori dormienti o di facilitare lo sviluppo del cancro in individui
con una predisposizione genetica al cancro. Innanzitutto, € imperativo chiarire i meccanismi alla
base della complessa interazione tra il virus e la vaccinazione, da un lato, e i percorsi oncogenici e
il sistema immunitario, dall'altro. Queste conoscenze aiuterebbero anche a stratificare meglio i
pazienti che hanno realmente bisogno della vaccinazione e potrebbero fornire informazioni su
come prevenire e trattare gli effetti collaterali indesiderati. In altre parole, & consigliabile effettuare
una valutazione personalizzata della reale necessita di vaccinare i pazienti a rischio, guidata dai principi
della vaccinomica e dell'adversomica [52,243]. Nell’attesa, si consiglia I'adozione di altre strategie
per proteggere i pazienti oncologici, ad esempio utilizzando anticorpi monoclonali [244] e plasma
iperimmune convalescente [245].
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